Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Laplace table transforms, Cheat Sheet of Engineering

The Laplace table helps in solving Laplace transform and Laplace inverse problems

Typology: Cheat Sheet

2023/2024

Uploaded on 06/02/2024

azahra-augiya-susanto
azahra-augiya-susanto 🇮🇩

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Table of LaPlace Transforms
()ft
L
{ ( )} ( )f t F s
1. 1
1
s
2. t
2
1
s
3.
n
t
1
!
n
n
s
, n is a positive integer
4.
1/2
t
s
5.
3/2
2s
6.
t
1
( 1) ,1
s
 
7.
sinkt
22
k
sk
8.
coskt
22
s
sk
9.
2
sin kt
2
22
2
( 4 )
k
s s k
10.
2
cos kt
22
22
2
( 4 )
sk
s s k
11.
at
e
1
sa
12.
sinhkt
22
k
sk
13.
coshkt
22
s
sk
()ft
L
{ ( )} ( )f t F s
14.
2
sinh kt
2
22
2
( 4 )
k
s s k
15.
2
cosh kt
22
22
2
( 4 )
sk
s s k
16.
at
te
2
1
()sa
17.
n at
te
1
!
n
n
sa
, n is a positive integer
18.
sin
at
e kt
22
()
k
s a k
19.
cos
at
e kt
22
()
sa
s a k

20.
sinh
at
e kt
22
()
k
s a k
21.
cosh
at
e kt
22
()
sa
s a k

22.
sint kt
2 2 2
2
()
ks
sk
23.
cost kt
22
2 2 2
()
sk
sk
24.
sin coskt kt kt
2
2 2 2
2
()
ks
sk
25.
sin coskt kt kt
3
2 2 2
2
()
ks
sk
26.
sinht kt
2 2 2
2
()
ks
sk
()ft
L
{ ( )} ( )f t F s
27.
cosht kt
22
2 2 2
()
sk
sk
28.
at bt
ee
ab
1
( )( )s a s b
29.
at bt
ae be
ab
( )( )
s
s a s b
30.
1 coskt
2
22
()
k
s s k
31.
sinkt kt
3
2 2 2
()
k
s s k
32.
22
sin sin
()
a bt b at
ab a b
2 2 2 2
1
( )( )s a s b
33.
22
cos cosbt at
ab
2 2 2 2
( )( )
s
s a s b
34.
sin sinhkt kt
2
44
2
4
ks
sk
35.
sin coshkt kt
22
44
( 2 )
4
k s k
sk
36.
cos sinhkt kt
22
44
( 2 )
4
k s k
sk
37.
cos coshkt kt
3
44
4
s
sk
38.
0()J kt
22
1
sk
39.
bt at
ee
t
ln sa
sb



pf2

Partial preview of the text

Download Laplace table transforms and more Cheat Sheet Engineering in PDF only on Docsity!

Table of LaPlace Transforms

f t( ) L { f t( )} F s( )

s

2. t^12 s

  1. tn^ n n^! 1 s 

, n is a positive integer

  1. t1/ s
  1. t1/2 3/ 2 s

  1. t^ ^ (^1 1) , 1 s^ 

  1. sin kt 2 k 2 s k
  2. cos kt 2 s 2 s k
  3. sin 2 kt

2 2 2

k s s  k

  1. cos^2 kt

2 2 2 2

s k s s k

  1. eat^1 s a

12.sinh kt 2 k 2 s k

13.cosh kt 2 s 2 s k

f t( ) L { f t( )} F s( )

  1. sinh^2 kt

2 2 2

k s s  k

  1. cosh 2 kt

2 2 2 2

s k s s k

  1. teat^12 ( s a)
  2. t en^ at   1

n

n s a 

, n is a positive integer

  1. eat sinkt 2 2 ( )

k s  a k

  1. e atcoskt 2 2 ( )

s a s a k

  1. eat sinhkt 2 2 ( )

k s  a k

  1. e atcoshkt 2 2 ( )

s a s a k

  1. t sinkt 2 2 2 2 ( )

ks s k

  1. t coskt

2 2 ( 2 2 )^2

s k s k

  1. sin kt kt coskt

2 2 2 2

ks s k

  1. sin kt kt coskt

3 2 2 2

ks s k

  1. t sinhkt 2 2 2 2 ( )

ks s k

f t( ) L{ f t( )} F s( )

27.t coshkt

2 2 ( 2 2 )^2

s k s k

eat ebt a b

( s  a )( s b)

aeat bebt a b

s s  a s b

  1. 1 cos kt

2 ( 2 2 )

k s s k

31.kt sinkt

3 (^2) ( 2 2 )

k s s k

32.^ sin^2 sin 2 ( )

a bt b at ab a b

^2 2 2

( s  a )( s b)

33.^ cos^ bt 2 cos 2 at a b

s s  a s b

34.sin kt sinhkt

2 4 4

k s s  k

35.sin kt coshkt

2 2 4 4

k s k s k

36.cos kt sinhkt

2 2 4 4

k s k s k

37.cos kt coshkt

3 4 4 4

s s  k

  1. J 0 ( kt) 2 1 2 s k

ebt eat t

 ln s a s b

Table of LaPlace Transforms

f t( ) L { f t( )} F s( )

  1. 2(1^ cos^ kt) t

^2

ln (^2) s k s

  1. 2(1^ cosh^ kt) t

^2

ln (^2) s k s

  1. sin^ at t

arctan a s

  1. sin^ at^ cosbt t

(^1) arctan 1 arctan 2 2

a b a b s s

 ^     

44. ^ 

1 a^2 4 t e t

a (^) s e s

 (^)    

45. ^ 

(^2 ) 2

a (^) e a t t

 e  a s

46.erfc 2

a t

e^ a^ s s

47. ^ 

(^2 ) 2 erfc 2

t (^) e a t a a

 t

 ^   ^ 

e^ a^ s s s

2 erfc 2

e^ ab eb t b t a t

 ^  

e^ a^ s s s b

49.^2 erfc erfc 2 2

e ab^ eb t b t a^ a t t

  ^  ^  ^ 

be^ a^ s s s b

f t( ) L { f t( )} F s( )

50. ( )t 1

51.^ ^  t^ t 0  e st^0 

52. eat f t( ) F s a

  1. (^) f t( a)U(t a) e asF s( )
  2. U( t a) eas s

  1. f (^ n)^ ( )t s F sn ( )  s n^ ^1 ^ f (0)  ... f^ n^1 (0)
  2. t nf t( ) ( 1) ( ) n^ n n

d (^) F s ds

0

t

^ f^ ^ g t^ ^ d F s G s( )^ ( )