Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Neural Network Model: Architecture and Error Calculation with Sigmoid and ReLU, Lecture notes of Engineering

An overview of a neural network model using sigmoid and rectified linear units (ReLUs). It includes the architecture of the network, the calculation of errors using binary cross entropy, squared error, and sparse cross entropy, and the implementation of ReLUs to mitigate the vanishing gradient problem.

Typology: Lecture notes

2022/2023

Uploaded on 11/20/2022

melis-gencer
melis-gencer 🇹🇷

1 document

1 / 6

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
misltilayerperceptnons
=
sigmoid
(
v
?
-2
:)
Binary
classification
sigmoid
°
2-
'
Ozz
-
-
-
Oz
,
sigmoid
Zih-srgmoidcwht.li
)
weights
for
t
F%¥
"
all
incoming
edges
te
2-
h
.
Witz
\
2
o
cross
Errori
=
-
[
yilegcji
)
+
d-
g.)
legit
-
ji
)
]
󲰛
binary
entropy
.
Avh
=
2.
(
yi-yit.Z.tn
whd
=
2
(
yi-yil.vh.z.ch/1-2-ih)xid
pf3
pf4
pf5

Partial preview of the text

Download Neural Network Model: Architecture and Error Calculation with Sigmoid and ReLU and more Lecture notes Engineering in PDF only on Docsity!

misltilayerperceptnons

= sigmoid

( v

? (^) -2:)

Binary

classification sigmoid ° ◦2- ' (^) Ozz

  • (^) -^ -

Oz, sigmoid^

Zih-srgmoidcwht.li )

weights

for t F%¥

all incoming edges^

te 2- h .

↑ ↑ ↑^ Witz ↑ ✗ (^) \ ✗^2 ✗ (^) ☐ ✗ (^) o cross Errori = -^ [^ yilegcji ) +^ d-g.) legit

ji

] binary entropy . Avh =

( yi-yit.Z.tn whd =

( yi-yil.vh.z.ch/1-2-ih)xid

④ Nonlinear Regression ji=y?zi ( (^) jitR ) 85 ◦r g ZH (^) sigmoid 2-ih-sigmoidcwj.si ) ↑ . I , I ↑ . Error

= (^) § ( yi

  • ji

squared

error

A-Uh^ =^ 2(yi

  • fi )^ -^ Zih Whd = 2( yi-yiY.vh.zih.tl
  • (^) 2- ih ).
✗ id

④ Multi^ to ,¥ (^9)?

'ñ< wit^ jic=YÉ. Zi it (^) sigmoid zih-sigmoidcwi.si

0 00

  • -^ -^ - 0 % % %^ " " Ely
:c -

jic } Error

= (^) { c=i Arch __^ 2. ( yic

  • Jic ) -^ Zih whd=
  1. [ ¥,( yic-jid.hn] .Zih( ttihtxid

Multiple Hidden (^) Layers. sigmoid ji

= sigmoid

( F.^ ti) 85 is [ 7 ↑.

° (^) Hr sigmoid^ tih =^ sigmoid^ ( (^) vi. zi) ✓ [ W [ Fan sigmoid Zih (^) = sigmoid^ Cwh ? %-) O O^ O^. (^).^. 0


, hotel #^ of (^) parameters = (Dt ) •^ Hi^

Hitt).^ Hz + (11-1+1)

T T " vanishing gradients^ "

or

" diminishing gradients

approaching

to zoo (^).