Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Solving Homogeneous Linear Differential Equations with Constant Coefficients, Lecture notes of Differential Equations

A comprehensive guide to solving homogeneous linear differential equations with constant coefficients. It covers various cases, including distinct real roots, repeated real roots, distinct imaginary roots, and repeated imaginary roots. Detailed explanations, examples, and step-by-step solutions to illustrate the concepts and techniques involved. It is a valuable resource for students studying differential equations and related fields.

Typology: Lecture notes

2021/2022

Uploaded on 02/27/2025

edgar-d-c
edgar-d-c ๐Ÿ‡ต๐Ÿ‡ญ

4 documents

1 / 44

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
HOMOGENEOUS LINEAR
DIFFERENTIAL EQUATIONS
WITH CONSTANT
COEFFICIENTS
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c

Partial preview of the text

Download Solving Homogeneous Linear Differential Equations with Constant Coefficients and more Lecture notes Differential Equations in PDF only on Docsity!

HOMOGENEOUS LINEAR

DIFFERENTIAL EQUATIONS

WITH CONSTANT

COEFFICIENTS

INTENDED LEARNING OUTCOMES:

โ€ข Solve for the solutions of homogeneous

linear D.E. with constant coefficients.

Homogeneous linear differential equations of order n with constant coefficient are of the form, ๐‘Ž 0

๐‘› ๐‘ฆ ๐‘‘๐‘ฅ ๐‘›

๐‘›โˆ’ 1 ๐‘ฆ ๐‘‘๐‘ฅ ๐‘›โˆ’ 1

OPERATOR FORM:

๐‘›

  • ๐‘Ž 1 ๐ท ๐‘›โˆ’ 1
  • โ€ฆ + ๐‘Ž๐‘›โˆ’ 1 ๐ท + ๐‘Ž๐‘›)๐‘ฆ = 0 or โˆ… ๐ท ๐‘ฆ = 0 where โˆ… ๐ท = ๐‘Ž 0 ๐ท ๐‘›
  • ๐‘Ž 1 ๐ท ๐‘›โˆ’ 1
  • โ€ฆ + ๐‘Ž๐‘›โˆ’ 1 ๐ท + ๐‘Ž๐‘› HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS

AUXILIARY EQUATION, โˆ… ๐’Ž

Associated with ๐‘Ž 0 ๐ท ๐‘›

  • ๐‘Ž 1 ๐ท ๐‘›โˆ’ 1
  • โ€ฆ + ๐‘Ž๐‘›โˆ’ 1 ๐ท + ๐‘Ž๐‘› ๐‘ฆ = 0 is an auxiliary equation written in the following form: โˆ… ๐‘š = ๐‘Ž 0 ๐‘š ๐‘›
  • ๐‘Ž 1 ๐‘š ๐‘›โˆ’ 1
  • โ€ฆ + ๐‘Ž๐‘›โˆ’ 1 ๐‘š + ๐‘Ž๐‘› = 0 If the roots of this auxiliary equation are r 1 , r 2 , โ€ฆ, r n then โˆ… ๐‘š = ๐‘Ž 0 ๐‘š โˆ’ ๐‘Ÿ 1 ๐‘š โˆ’ ๐‘Ÿ 2 โ€ฆ ๐‘š โˆ’ ๐‘Ÿ๐‘› = 0 Relative to this we can write (๐‘Ž 0 ๐ท ๐‘›
  • ๐‘Ž 1 ๐ท ๐‘›โˆ’ 1
  • โ€ฆ + ๐‘Ž๐‘›โˆ’ 1 ๐ท + ๐‘Ž๐‘›)๐‘ฆ = 0 in the factored form: โˆ… ๐ท ๐‘ฆ = ๐‘Ž 0 ๐ท โˆ’ ๐‘Ÿ 1 ๐ท โˆ’ ๐‘Ÿ 2 โ€ฆ ๐ท โˆ’ ๐‘Ÿ๐‘› ๐‘ฆ = 0

SOLUTIONS OF HOMOGENEOUS LINEAR D.E.

When using the operator D, it can be shown that if y = ๐‘’ ๐‘š๐‘ฅ ๐ท ๐‘’ ๐‘š๐‘ฅ = ๐‘š๐‘’ ๐‘š๐‘ฅ ๐ท 2 ๐‘’ ๐‘š๐‘ฅ = ๐‘š 2 ๐‘’ ๐‘š๐‘ฅ โˆด ๐ท ๐‘› ๐‘’ ๐‘š๐‘ฅ = ๐‘š ๐‘› ๐‘’ ๐‘š๐‘ฅ (๐‘› = 1 , 2 , โ€ฆ ) So, if โˆ… ๐ท is to be operated on ๐‘’ ๐‘š๐‘ฅ , โˆ… ๐ท ๐‘’ ๐‘š๐‘ฅ = (๐‘Ž 0 ๐ท ๐‘›

  • ๐‘Ž 1 ๐ท ๐‘›โˆ’ 1
  • โ€ฆ + ๐‘Ž๐‘›โˆ’ 1 ๐ท + ๐‘Ž๐‘›)๐‘’ ๐‘š๐‘ฅ Hence, if ๐‘š = ๐‘Ÿ is a root of the auxiliary equation โˆ… ๐‘š = 0 , then โˆ… ๐ท ๐‘ฆ = โˆ… ๐ท ๐‘’ ๐‘š๐‘ฅ = โˆ… ๐ท ๐‘’ ๐‘Ÿ๐‘ฅ = 0 โˆด y = ๐‘’ ๐‘š๐‘ฅ is a solution of โˆ… ๐ท ๐‘ฆ = 0. In general, it could be written as y = ๐‘๐‘’ ๐‘š๐‘ฅ where c is a constant.

SOLUTIONS OF HOMOGENEOUS LINEAR D.E. WITH CONSTANT COEFFICIENTS โ€œAny linear combination of solutions of a homogeneous linear differential equation is also a solution.โ€

  • If ๐‘ฆ 1 , ๐‘ฆ 2 , โ€ฆ, ๐‘ฆ๐‘› are solutions to the homogeneous linear differential equation with constant coefficients, then ๐‘ฆ = ๐‘ 1 ๐‘ฆ 1 + ๐‘ 2 ๐‘ฆ 2 + โ€ฆ + ๐‘๐‘›๐‘ฆ๐‘› is a solution, where ๐‘ 1 , ๐‘ 2 , โ€ฆ , ๐‘๐‘› are constants.

SOLUTIONS OF HOMOGENEOUS LINEAR D.E. WITH CONSTANT COEFFICIENTS CASE 1: Distinct Real Roots Example : Solve the D.E. ๐‘ฆ" + ๐‘ฆโ€ฒ โˆ’ 2๐‘ฆ = 0. The D.E. in operator form: ๐ท 2

  • ๐ท โˆ’ 2 ๐‘ฆ = 0 โˆ… ๐‘š = ๐‘š 2
  • ๐‘š โˆ’ 2 = 0 โˆ… ๐‘š = ๐‘š + 2 ๐‘š โˆ’ 1 = 0 The roots of the auxiliary equation are: ๐‘š 1 = โˆ’ 2 & ๐‘š 2 = 1 Hence, the solution of the given D.E.: ๐’š = ๐’„๐Ÿ๐’† ๐’™
  • ๐’„๐Ÿ๐’† โˆ’๐Ÿ๐’™

SOLUTIONS OF HOMOGENEOUS LINEAR D.E. WITH CONSTANT COEFFICIENTS CASE 1: Distinct Real Roots Example : Solve the D.E. ๐‘ฆ โ€ฒโ€ฒโ€ฒ โˆ’ ๐‘ฆโ€ฒโ€ฒ โˆ’ 2๐‘ฆโ€ฒ = 0. The D.E. in operator form: ๐ท 3 โˆ’ ๐ท 2 โˆ’ 2๐ท ๐‘ฆ = 0 โˆ… ๐‘š = ๐‘š 3 โˆ’ ๐‘š 2 โˆ’ 2 ๐‘š = 0 โˆ… ๐‘š = ๐‘š ๐‘š 2 โˆ’ ๐‘š โˆ’ 2 = 0 โˆ… ๐‘š = ๐‘š ๐‘š โˆ’ 2 ๐‘š + 1 = 0 The roots of the auxiliary equation are: ๐‘š 1 = โˆ’ 1 , ๐‘š 2 = 0 , & ๐‘š 3 = 2 Hence, the solution of the given D.E.: ๐’š = ๐’„๐Ÿ๐’† โˆ’๐’™

  • ๐’„๐Ÿ +๐’„๐Ÿ‘๐’† ๐Ÿ๐’™

SOLUTIONS OF HOMOGENEOUS LINEAR D.E. WITH CONSTANT COEFFICIENTS CASE 1: Distinct Real Roots Example : Solve the D.E. ๐ท 2

  • 2 ๐ท โˆ’ 1 ๐‘ฆ = 0. โˆ… ๐‘š = ๐‘š 2
  • 2๐‘š โˆ’ 1 = 0 By quadratic formula, ๐‘š =

2 โˆ’ 4๐ด๐ถ 2๐ด

2 โˆ’ 4 ( 1 )(โˆ’ 1 ) 2 ( 1 )

The roots of the auxiliary equation are: ๐‘š 1 = โˆ’ 1 + 2 , & ๐‘š 2 = โˆ’ 1 โˆ’ 2 Hence, the solution of the given D.E.: ๐’š = ๐’„๐Ÿ๐’† โˆ’ 1 + 2 ๐’™

  • ๐’„๐Ÿ๐’† โˆ’ 1 โˆ’ 2 ๐‘ฅ

SOLUTIONS OF HOMOGENEOUS LINEAR D.E. WITH CONSTANT COEFFICIENTS CASE 1: Distinct Real Roots Example : Solve the D.E.๐‘ฆ" โˆ’ 9๐‘ฆ = 0 with ๐‘ฅ = 0 , ๐‘ฆ = 0 , and ๐‘ฆ โ€ฒ = 3. The D.E. in operator form: ๐ท 2 โˆ’ 9 ๐‘ฆ = 0 โˆ… ๐‘š = ๐‘š 2 โˆ’ 9 = 0 โˆ… ๐‘š = ๐‘š + 3 ๐‘š โˆ’ 3 = 0 The roots of the auxiliary equation are: ๐‘š 1 = โˆ’ 3 & ๐‘š 2 = 3 The general solution of the given D.E.: ๐’š = ๐’„๐Ÿ๐’† โˆ’ 3 ๐’™

  • ๐’„๐Ÿ๐’† 3 ๐‘ฅ

SOLUTIONS OF HOMOGENEOUS LINEAR D.E. WITH CONSTANT COEFFICIENTS CASE 1: Distinct Real Roots Example : Solve the D.E.๐‘ฆ" โˆ’ 9๐‘ฆ = 0 with ๐‘ฅ = 0 , ๐‘ฆ = 0 , and ๐‘ฆ โ€ฒ = 3. The general solution of the given D.E.: ๐’š = ๐’„๐Ÿ๐’† โˆ’ 3 ๐’™

  • ๐’„๐Ÿ๐’† 3 ๐‘ฅ But when ๐‘ฅ = 0 , ๐‘ฆ โ€ฒ = 3 ๐’šโ€ฒ = โˆ’๐Ÿ‘๐’„๐Ÿ๐’† โˆ’ 3 ๐’™
  • ๐Ÿ‘๐’„๐Ÿ๐’† 3 ๐’™ ๐Ÿ‘ = โˆ’๐Ÿ‘๐’„๐Ÿ + ๐Ÿ‘๐’„๐Ÿ ๐Ÿ = โˆ’๐’„๐Ÿ + ๐’„๐Ÿ (EQ. 2)

SOLUTIONS OF HOMOGENEOUS LINEAR D.E. WITH CONSTANT COEFFICIENTS CASE 1: Distinct Real Roots Example : Solve the D.E.๐‘ฆ" โˆ’ 9๐‘ฆ = 0 with ๐‘ฅ = 0 , ๐‘ฆ = 0 , and ๐‘ฆ โ€ฒ = 3. The general solution of the given D.E.: ๐’š = ๐’„๐Ÿ๐’† โˆ’ 3 ๐’™

  • ๐’„๐Ÿ๐’† 3 ๐‘ฅ By solving equations 1 and 2, simultaneously, ๐ŸŽ = ๐’„๐Ÿ + ๐’„๐Ÿ ๐Ÿ = โˆ’๐’„๐Ÿ + ๐’„๐Ÿ

- ๐Ÿ = ๐Ÿ๐’„๐Ÿ + ๐ŸŽ ๐’„๐Ÿ = โˆ’

SOLUTIONS OF HOMOGENEOUS LINEAR D.E. WITH CONSTANT COEFFICIENTS CASE 2: Repeated Real Roots Suppose a homogeneous linear differential equation is given by ๐ท โˆ’ 2 2 ๐‘ฆ = 0 ๐‘’ โˆ’ 2 ๐‘ฅ ๐ท โˆ’ 2 2 ๐‘ฆ = 0 ๐‘’ โˆ’ 2 ๐‘ฅ ๐ท โˆ’ 2 2 ๐‘ฆ = ๐ท 2 (๐‘’ โˆ’ 2 ๐‘ฅ ๐‘ฆ) = 0 ๐ท(๐‘’ โˆ’ 2 ๐‘ฅ ๐‘ฆ) = ๐‘ 2 ๐‘’ โˆ’ 2 ๐‘ฅ ๐‘ฆ = ๐‘ 1 + ๐‘ 2 ๐‘ฅ Hence, the solution of the differential equation is ๐‘ฆ = ๐‘ 1 ๐‘’ 2 ๐‘ฅ

  • ๐‘ 2 ๐‘ฅ๐‘’ 2 ๐‘ฅ ๐ท โˆ’ ๐‘Ž ๐‘› ๐‘ฆ๐‘’ ๐‘Ž๐‘ฅ = ๐‘’ ๐‘Ž๐‘ฅ ๐ท ๐‘› ๐‘ฆ

SOLUTIONS OF HOMOGENEOUS LINEAR D.E. WITH CONSTANT COEFFICIENTS CASE 2: Repeated Real Roots Thus, if a homogeneous linear differential equation is given by ๐ท โˆ’ ๐‘Ž 3 ๐‘ฆ = 0 ๐‘’ โˆ’๐‘Ž๐‘ฅ ๐ท โˆ’ ๐‘Ž 3 ๐‘ฆ = 0 ๐‘’ โˆ’๐‘Ž๐‘ฅ ๐ท โˆ’ ๐‘Ž 3 ๐‘ฆ = ๐ท 3 (๐‘’ โˆ’๐‘Ž๐‘ฅ ๐‘ฆ) = 0 ๐ท 2 ๐‘’ โˆ’๐‘Ž๐‘ฅ ๐‘ฆ = ๐‘ 3 ๐ท ๐‘’ โˆ’๐‘Ž๐‘ฅ ๐‘ฆ = ๐‘ 2 + ๐‘ 3 ๐‘ฅ ๐‘’ โˆ’๐‘Ž๐‘ฅ ๐‘ฆ = ๐‘ 1 + ๐‘ 2 ๐‘ฅ + ๐‘ 3 ๐‘ฅ 2 Its solution is ๐‘ฆ = ๐‘ 1 ๐‘’ ๐‘Ž๐‘ฅ

  • ๐‘ 2 ๐‘ฅ๐‘’ ๐‘Ž๐‘ฅ +๐‘ 3 ๐‘ฅ 2 ๐‘’ ๐‘Ž๐‘ฅ