Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Quantum Mechanics: Probability Density and Boundary Conditions, Assignments of Quantum Physics

The concept of probability density and boundary conditions in quantum mechanics. It provides a detailed mathematical analysis of the wave function and its properties, including the relationship between the wave function and the probability density. The document also explores the role of boundary conditions in determining the behavior of the wave function and the associated probability density. Key topics covered include the construction of the probability density equation, the interpretation of the wave function, the significance of boundary conditions, and the verification of the probability conservation. A rigorous and comprehensive treatment of these fundamental concepts in quantum mechanics, making it a valuable resource for students and researchers in the field.

Typology: Assignments

2022/2023

Uploaded on 04/28/2024

physics-dye
physics-dye 🇺🇸

1 document

1 / 6

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
4.
3.4)
Q1r
1.
t\W
l
·,
El:
°')
'J
er,t\\
1.\f
(~)t) = ce-K't-
"i:"'"
in.
tVLQ.
re3ion.
wher~
'X
")
0
For
~
~lep
fo\en..\-1c&
-E
ri----
E
'I
o
..Q.ea
&s
to
c,..
0
pr~boi\,ili\~
c.otrent:
.
,
t:"'
\Jo
')'..~O
J
~
=
~;[1-ir
'ii
'1¥)
-
'lf
1\f
")]
=
!u
~
Y-
{l(-kc
~
l)-cj21l~~cerl•)]
0
-a
~
~]
= 0
b\ \
I . .
o'">Jf
'"lf
tt
-d
J
,c
1
'U.15e
il\!l
C.onse
f'IJct\\o(\
OF
prob£Abi\ih.\
e.q_
ua\
1
on
=~
= --
to
os9ue
U
ot
'cl'X
W~~
fu
~oba\,
i
\i\~
co«enb
,afii5h!~
i{t
~
fl/..
(0
.
Wliio.l
ca.n
Lue
SCA~
o.bo1>l-.
''R."
?
~
b
\c.
'1\f
1\f
~
f~resel\l6
4wz.
Mt>9.U~os
oF
¥ (
1.)t))
wl,cl-,
i~
titile
-
,~~eeen&e~
,t~
,
,~\)~~OUt
().Qi
of
svuce
/rk
l,OCIO
it.
c\,,~~e5
w.n
tir-e
l
;.e.
:l
(
1\1'1\1'4
)
=
0)
tor
~(l
of
e~c...ce
.
+
bk
-\Ws
is
eqoaQ.
-to
-
~~
)
,\-Ws
h\wJ\6
J't.
M06l
l,e,
0.
CO~$°tCARl
+~roua\.io\>l
o12.ofS?o.ce
.4-b\c
~
"l_)cl
-r-x.=O)~n"l~o
if"X=O
SiOc<2
J"l.f•h>~tbe~~
GG.MQ
C.oOsi~•l
~~loU<J\b\)t
~12
er
69CICe.
* :.
'J
'l
\J4,li6~~ w~
~
<.
0
~
b\ _
:r
..
~5
_
\t..o
c'l
(
Oo
Colfet1\
is
)
c.
T -
a-ioc.
-
l(
a.~
=
O \
~tar.sf111H~
f
~
-1-
T
--
\ )
~
t'i\US
l
e9~Q 1
~iso
~le
if
Lo\w-
~<o
,
T>.
-
.\:..'(
~~
\-
\M')=
0
,I-
~
-J
"-,
oc
'\-
;:J.oc
~
~lc.\11'
f J _
l~
M.
)
~
J°ref
M
rer -
~B\\
..\-ha.ir
roJio
i
~
1 )
S°ll\C.O
t~o're
~UGI~
4 .
~s
)
So
Q~12
.\\w,
tilYIA.
-
Io~~l
s.
i=
·
..
~
0
~
~
)
'-I
O
1-
~
o.)
\
i
cfa!
oF
M.c.
s s
"r-."
in
c;&eJl
l
fr
O
~
II.
Jen.
~i&a
oF
1kis
?o+ert.\ic&
'
~inO
~
t-
T
¼
Verif~
ffo~,ili\o
\5
~sefv~&
! - - -
---
F-
tor
'({o
:
~\J='Jo)
cl'¥
=
-~('Jo-E
\'lf(
~)
\I
\
\"
"'·
"
0
a'X.'l
f\;'l.
-;
,(i
,= ,o,-¼0
_J{
cf'l\l("()
+
V('k.)'l\l(it)-
E'1.\r(~)
~
01"<)0
c _
__.
'X
~
ff\
0
"X..
'1.
-
~
cf
1.\f(~)
=
1¥°('X)
(
\Jo
-E:
)
:;}
('Y\
01.
i
'l\((rx
1
=
fi
ei'Lo
'k.
+
~e\~
-x.
~
,___.......
'
1(lci&)efl\.
l
unu.2
to.Hi>r,l~WO\Jla
pf3
pf4
pf5

Partial preview of the text

Download Quantum Mechanics: Probability Density and Boundary Conditions and more Assignments Quantum Physics in PDF only on Docsity!

Q1r

  1. t\W l

·, El:

°') 'J er,t\ 1.\f (~)t) = ce-K't- "i:"'" in. tVLQ. re3ion. wher~

'X ") 0 For

~ ~lep

fo\en..-1c&

  • E ri----E 'I o ..Q.ea &s to c,.. 0 pr~boi,ili~ c.otrent:.
, t:"'\Jo
')'..~O

J ~ = ~;[1-ir 'ii '1¥)

  • 'lf 1\f ")]

= !u ~Y-{l(-kc ~ l)-cj21l~~cerl•)]

-a~

~]

= 0 ✓

b

\ \

I.

  • . o'">Jf '"lf tt -d J ,c

1

'U.15e il!l C.onse f'IJct\o(
OF prob£Abi\ih.
e.q_ ua
1 on =~ = - - to os9ue

U ot 'cl'X

W~~ fu ~oba, i\i~ co«enb ,afii5h!~ i{t ~ fl/.. (

. Wliio.l ca.n

Lue SCA~ o.bo1>l-.

''R."?

~ b\c. '1\f1\f ~

f~resel\l

4wz. Mt>9.U~os oF ¥ (1.)t)) wl,cl-, i~ titile - ,eeen&e~ ,t~,,~)OUt

().Qi of svuce /rk l,OCIO it. c,,~~e w.n tir-e l;.e. :l ( 1\1'1\1' ) = 0) tor ~(l of

e~c...ce. + bk -\Ws is eqoaQ. -to - ~~ ) ,-Ws

h\wJ\6 J't.

M06l l,e, 0. CO~$°tCARl +~roua.io>l

o12.ofS?o.ce

. 4-b\c ~ "l_)cl -r-x.=O)~n"l~o if"X=O SiOc< J"l.f•h>~tbe~~

GG.MQ

C.oOsi~•l

~~loU<J\b)t

~12 er 69CICe.

    • :. 'J

'l \J4,li6~~

w~ ~ <.

~ b
_ :r .. ~ _ \t..o c'l ( Oo Colfet1\ is)

c. T - a-ioc.

  • l( a.~ = O

\ ~tar.sf111H~

f ~ -1- T -- \ ) ~

t'i\US l e9~Q

1

~iso ~le if Lo\w- ~<o , T>.

  • .:..'( ~~\•
    • \M')= 0

,I- ~ -

J"-,oc '- ;:J.oc

~ ~lc.\11'

f J _ l~

M.

J°ref

M

rer

  • ~B\ ..-ha.ir roJio i ~ 1 ) S°ll\C.O t~o're ~UGI~ •

. ~s) So Q~

.\w, tilYIA.

  • Io~~l s. i= ·.. ~ 0 ~ ~ ) '-I O 1- ~ o.) \ i cfa! oF M.c. ss"r-." in c;&eJl l fr O ~ II.

Jen. ~i&a oF 1kis ?o+ert.\ic& ' ~inO ~ t- T ¼ Verif~ ffo~,ili\o \5 ~sefv~& ! -


F- 

tor '({o : ~\J='Jo)

cl'¥ = -~('Jo-E 'lf( ~) \I \ " "'· "

a'X.'l

f;'l. -; ,(i

,= ,o,-¼

_J{ cf'l\l("()

+ V('k.)'l\l(it)-

E'1.\r(~)

~

01"<) c_ __.'X

ff\ 0 "X.. '1.
  • ~ cf 1.\f(~) = 1¥°('X) ( \Jo -E:)
:;} ('Y\ 01.i

'l((rx 1 = fi ei'Lo'k.+ ~e~ -x.

~ ,___.......

'1(lci&)efl.
lunu.2 to.Hi>r,l~W

tor 'X) o: ~ =o:

bouo&~r8 loo&i~io'ls:

1¥L .... ~ ~ ~~ ~ 'lfR)

  • bk,

1f i.. = 'VR ( @ ~ = 0)

  • l~ \ B'l

l

~Ow~ - (-(~:n

('t-~o)'

{1£.+\Lo)

~ e-°'"6(0) 1" ~? ) -= c ~

)

\ _\i. I_ ~ \t..Jn). - il,.,J,a).

0 "~ ,n- - ~,~oe--·- = ~(.~

ilo(A- B) == ik(c.)

    • :, \ko·(A-B

) ·_ i~ (A-+B\

, !.() ~ - ,·~ ~ ·= , '(. Ii + i ~ B

i-u..A. - ,l(.oA =- - (,\l.&-'-i~oB)

A-r{ \L. ~ k.o) =- - ( \L +~o he,

( \l -+"-o) 'l

~'. - ?- "-~b -+ \i.b '\ ➔ ~ '<..c.o

C

\L'. + d-\L..l.(.o

~lt.o

1

Ft

llL +"-.!>)t

8. \Lo

~ .. 1'..

.( "l ➔ d- '<. tc. 0 'T \t..c, 1

\l" + 'd. "--"- () +~,.

=- '

1 ?ro>Qbili~; ~

Col\se,ve&!

l corn.b H'lj our ~ -+ ~ +A

-B re'ou\ l We

<ae ~ '.

\ -- f ~ ~e ·,\t..~ ( Cosh. ("c..)

  • ~ SiOh

(r<c.) \

· A A

J

.

\ - ~ = ~ e. ;1tc.. ( c.osk ( w:-) + i ~

~ill .-(C<.c.))

a = - ~ e i!C.. \ P-c.osh( ~q.) T i ( t -{) Sin It (t<c.))

_,(,~

~ k'-k1.

C 0.e.

~

A

~ c6slt'(w;.)

  • ( ~:~ k'Y s1alt'(e1.c..)

*l*

~ ( ,~5il'~ (~)) ➔ \ ~~u.'),nh~(lcc-)

4

4 + 4 'oiatC-te.. ... ( ~~"-')1 Sinh'(1t.~)

-..1.ar