Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Hàm 1 biến toán cao cấp, Slides of Mathematics

Hàm 1 biến toán cao cấp khoá 50

Typology: Slides

2024/2025

Uploaded on 06/02/2025

duong-nguyen-minh-tho
duong-nguyen-minh-tho 🇻🇳

4 documents

1 / 16

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff

Partial preview of the text

Download Hàm 1 biến toán cao cấp and more Slides Mathematics in PDF only on Docsity!

HAM SO MOT BIEN THUC § 1. Ham s6 mot bién sé thwc — Gidi han Ham sé m6t bién s6 thuc. 1. Ham mét bién va mét sé kién thie co ban: Xeét hai tap De R, YCR khac rong. Ham s6 f 1a mét quy tac lam tuong tmg mdi sé xe D véi mét va chi mét sé y € Y. Ta thong ky hiéu f:DoY xh y=f(x) hay con viét tat la y = f(x). Tap D thwong dugc goi la tap xac dink cua ham f . Tap gid tricuaham f latap hop f(D) = {y eY/dxeD:y Vidu : Xétham sé y = Vx. = f(x)} ¥ Tap xdc dinh la D =/ 0,+00) ¥ Tap gid tri la f(D) ={y €R/3xe[0,+00):y =—Vx} = (—=,0] # Mét s6 ham thuong gap trong chtrong trinh Toan cua bac Phé théng Trung hoc la Ham lity thtta: y =x" Ham mt: y=a* (a>0) Ham logarithm: y =log, x (0 F(x,) > f(x,) Ham f la ham bi chan trong (a,b) cD, néu 3m,MeR:ma): lim f(x) =L © lim f(x) = lim f(x) =L xa xa , , wos . x Vi du : Tinh gidi han lim — “ mh Giai : Ta co ‘ x . x : x : x Y lim =lim—=1 ¥ lim — = lim —~— =-1 xl)" Ix| x0" & x07 Ix| x07 (—x) Vi lim f(x) # lim f(x) nén khéng tn tai lim 4 x0! x—»07 x0 Ix| Mét sé tinh chat cua gidi han. Néu lim f(x) va lim g(x) ton tai httu han thi: xa i. limC=C voi C lahang sé Vv. lim fod _ tim £9) néu limg(x) 40 ii, Tim[ f(x) +g(%) |= lim f(%) “lim g(x) me gO) limg() iti, lim [c. f(x x) |= c.lim f(x) véi c la hang sé vi. lim (Le yf ’) = [im f(x) ype xa xa iv. lim [£(x) 800) | = lim f(x). lim g(x) vii. Néu f la ham so cap va a thudéc mién xdc dinh cua f thi lim f(x )= f(a) Vidul: ¥ lim(x° +x) = limx? +limx = 2 xl xl x1 v lim (a es lim a’ *—lima+lim 1 = (-1) -(-1)4+1 =1 vw lim| ( (x+2)( -3)|= = lim ( (x+2) ).lim(x—3) ¥ = fhesete [lim x—lim3 | v =(2+2][2-3]=-4 ¥ lim3x*= 3limx® = 3.2° = 24 x2 xed § 3. Dao ham va Vi phan cua Ham mot bién. a. Dinh nghia dao ham tai m6t diém. Cho ham f(x) xac dinh trén tap DCR. Xét (a,b) D va x, € (a,b). Néu F()~fF%) , gidi han lim t6n tai thi ta dinh nghia dao ham cua f(x) tai x, 9% XX, la gidi han nay, nghia la _ £ (x)= F(x) F'%) = tim roy, u Ta ky hiéu Ax =x—x, va Af(x,)= f(x, +Ax)— f(x,) thi fi) = lim “F0) Ax>o0) AX b. Mét s6 tinh chat cua dao ham. Cho hai ham f(x) va g(x) cé dao ham tai x thi ¥ [fete] =f @es'@) ¥ [f(x).g(x)] = f'@).(2) + £2.38") y (Aa) _ feet fl2.g"(2) g(x) [oF voi g(x) #0 c. Dao ham cua ham hop. Xét ham hop y= fi u( x) |. Gia str u(x) cé dao ham tai x, va f(u) cd dao ham tai u, =u(x,). Khidé, y= f{ u(x) | cé dao ham tai x, va thoa )= f(y) xu'(x) Dao ham m6t bén cia ham mit bién. Xét ham f(x) xac dinh trén tap DCR va x, €D. > Néu gidi han lim F()= FC) — fl) X>Xy x—- Xp ton tai thi ta dinh nghia dao ham bén phai cua ham f(x) tai x, la gidi han nay, nghia la fig) = lim £0) FO) — f(X) XXy x— Xq F=f) > Néu gidi han lim —————* Xx x-— Xo ton tai thi ta dinh nghia dao ham bén trdi cua ham f(x) tai x, la gidi han nay, nghia la f(x) = lim F(x)— f(x) roxy XX, Chit y : Pad=fOg)ak<0 & fi'(x,)=k<2 Vi phan cua ham mot bién. Xét ham f(x) xac dinh trén tap DCR va x, €D. Néu ta viét dugec Af (x) = f(%) +Ax)—f(x,) = AAx+O(Ax) trong dé A 1a mot hang sé di voi Ax va lim O(Ax)=0, thi ta dinh nghia vi phan cua f(x) tai x, la df (x,) = A.Ax Luc dé, tandi rang ham f(x) kha vi tai x, . Dinh ly. Ham f(x) cé dao ham tai x = ham f(x) kha vitai x va df(x) = f'(x)Ax Dé y rang, néu ta xét ham f(x) =x, thi ta kiém tra dé dang két qua dx = Ax. Do dé, ta cd thé viét 2. Dao ham cap cao va vi phan cap cao cua ham m6t bién. a. Dao ham cp cao. ¥ Dao ham cap hai cua f(x) la f"(x) )=[ Fo] ¥ Baoham cap ba cua f(x) la fn=[F"o] Y Daoham cap n cua f(x) 1a F(x) =| f(xy] b. Vi phan cap cao. Xét f(x) la mot ham kha vi trén tap DCR. Khi do df(x) = f'(x)dx la mot ham cua x (trong dé dx khéng déi). Vi phan cap hai cua f(x) la a f(x) = d(df(x)) d° f(x) = dl f'(x)dx] = LrlevicT ae = [7109 ds Fy i = f(xydxy = fx Tuong tu, ta co vi phan toan phan a n cua f(x) la a” F(x) = f (a)(dzx)" Thi 3. M6t s6 wing dung cua dao ham va vi phan. Quy tac L’Hospital. Xét khoang (a,B8) va x, €(a,f) Gia str f(x) va g(x) 1a cdc ham kha vi trong khoang (a,B)\{x,} va lién tuc tai x, . Néu lim f(x) =0, lim g(x) =0 va lim a t6n tai thi XXy XXy ¥>% Q(X lim 2) = lim fA) XX a(x) XX a(x) Chii 4 : phat biéu trén van dung trong cac trudng hop X > Xy XX xX —> too SAK 4K lim f(x) = va lim 9(x) = XX XX ee? Inx L=lim 7 xo x Inx 00 Vi lim —> co dang — — nen ap dung quy tac L’ Hospital, ta cd ] es ee L= lim 22 “|= lim (22) — lim = im —> —0 mto 7 ae) a+oo (x ) roto Dy rt Dey