Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Fluids Assignment 4 – Hydrostatic Forces on Curved Surfaces, Quizzes of Fluid Mechanics

Fluids Assignment 4 – Hydrostatic Forces on Curved Surfaces Description: Companion to Lecture 4 Focused on resolving forces on curved submerged surfaces Helps in mastering vertical and horizontal force components

Typology: Quizzes

2021/2022

Available from 06/06/2025

imwinter
imwinter 🇵🇭

5

(1)

148 documents

1 / 4

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
PROBLEM 1
DETERMINE THE MAGNITUDE OF HORIZONTAL AND VERTICAL COMPONENTS OF THE TOTAL
FORCE PER METER LENGTH ACTING ON THE THREE-QUARTER CYLINDER GATE SHOWN IN FIG
P4.1.
SOLUTION:
FH=γh
A
FH=(9.81 kN/m3)(3 m )(2 m)(1 m)
FH=58.860 kN
FV=γV
FV=(9.81 kN/m3)(1 m)(Athree quarter circle +Arectangle)
FV=(9.81 kN/m3)(1 m) ((2 m)2
4+ (4 m)(2 m))
FV=170.937 kN
pf3
pf4

Partial preview of the text

Download Fluids Assignment 4 – Hydrostatic Forces on Curved Surfaces and more Quizzes Fluid Mechanics in PDF only on Docsity!

DETERMINE THE MAGNITUDE OF HORIZONTAL AND VERTICAL COMPONENTS OF THE TOTAL

FORCE PER METER LENGTH ACTING ON THE THREE-QUARTER CYLINDER GATE SHOWN IN FIG

P4.1.

SOLUTION:

F

H

= γh

A

F

H

= ( 9. 81 kN/m

3

)( 3 m )( 2 m)( 1 m)

F

H

= 58. 860 kN

F

V

= γV

F

V

= ( 9. 81 kN/m

3

)( 1 m)(A

three quarter circle

+ A

rectangle

F

V

= ( 9. 81 kN/m

3

)( 1 m) (

2 m

2

  • ( 4 m)( 2 m))

F

V

= 170. 937 kN

FROM FIG. P4.2, THE 1.20 m DIAMETER CYLINDER, 1.2 m LONG IS ACTED UPON BY WATER ON

THE LEFT AND OIL HAVING SP. GR. OF 0.8 ON THE RIGHT. DETERMINE THE COMPONENTS OF

THE REACTION AT B IF THE CYLINDER WEIGHTS 19.62 kN.

SOLUTION:

For Water

F

H 1

= γh

A = ( 9. 81 kN/m

3

)( 1. 2 m )( 1. 2 m)( 1. 2 m)

F

H 1

= 16. 952 kN

F

V 1

= γV = ( 9. 81 kN/m

3

)( 1. 20 m)(A

semicircle

F

V 1

= ( 9. 81 kN/m

3

)( 1. 20 m) (

π( 0. 60 m)

2

F

V 1

= 6. 657 kN

For Oil

F

H 2

= γh

A = ( 9. 81 kN/m

3

)( 0. 80 )( 0. 6 m )( 1. 2 m)( 1. 2 m)

F

H 2

= 6. 781 kN

F

V

2

= γV = ( 9. 81 kN/m

3

)( 0. 80 )( 1. 20 m)(A

semicircle

F

V 2

= ( 9. 81 kN/m

3

)( 0. 80 )( 1. 20 m) (

π

  1. 60 m

2

F

V 2

= 5. 326 kN

∑ F

x

= 0 = F

H

1

− F

H

2

− R

B

x

R

B x

= 16. 952 kN − 6. 781 kN

R

B x

= 10. 171 kN

∑ F

y

= 0 = F

V 1

+ F

V 2

− W + R

B y

R

B y

= 19. 62 kN − 6. 657 kN − 5. 326 kN

R

B y

= 7. 638 kN

DETERMINE THE FORCE F REQUIRED TO HOLD THE CONE SHOWN IN FIG. P4.4. NEGLECT THE

WEIGHT OF THE CONE.

SOLUTION:

F

oil

= γV

oil

F

oil

= ( 9. 81 kN/m

3

)( 0. 8 )(V

cylinder

− V

cone

F

oil

= ( 9. 81 kN/m

3

)( 0. 8 ) (π( 3 tan(15°) m)

2

( 5 m) −

π

3 tan

m

2

( 3 m)

F

oil

= 63. 726 kN

F

air

= P

air

A

F

air

= ( 20 kPa)(π

3 tan

m

2

F

air

= 40. 600 kN

F

y

= 0 = F − F

oil

+ F

air

F = 63. 726 kN − 40 .600kN

F = 23. 126 kN