Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Midterm Formula Sheet for Probability and Statistics, Study notes of Statistics

ec 233 mathematical statistics midterm formula sheet

Typology: Study notes

2018/2019

Uploaded on 10/06/2019

gulsahsui
gulsahsui 🇹🇷

5

(3)

12 documents

1 / 1

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Midterm Formula Sheet
𝑝(𝑦)= 𝑝(1 𝑝)𝑦−1 𝑦 = 0,1,2, , 𝑛 𝐸(𝑌)=1
𝑝 𝑉(𝑌)=1 𝑝
𝑝2 𝑚(𝑡)=𝑝𝑒𝑡
1(1𝑝)𝑒𝑡
p(y)=
r
y
æ
è
çö
ø
÷N-r
n-y
æ
è
çö
ø
÷
N
n
æ
è
ç
ö
ø
÷
for y=0,1,2,..., n y £r,n-y£N-r E(Y)=nr
NV(Y)=nr
N
æ
è
çö
ø
÷N-r
N
æ
è
çö
ø
÷N-n
N-1
æ
è
çö
ø
÷
𝑝(𝑦)=𝜆𝑦𝑒−𝜆
𝑦! 𝑓𝑜𝑟 𝑦 = 0,1,2, 𝜆 > 0 𝐸(𝑌)= 𝜆 𝑉(𝑌)= 𝜆 𝑚(𝑡)= 𝑒𝜆(𝑒𝑡−1)
𝑓(𝑦)=1
𝜃2𝜃1 𝑓𝑜𝑟 𝜃1 𝑦 𝜃2 𝐸(𝑌)=𝜃1+𝜃2
2 𝑉(𝑌)=(𝜃2𝜃1)2
12 𝑚(𝑡)=𝑒𝑡𝜃2𝑒𝑡𝜃1
𝑡(𝜃2𝜃1)
𝑓(𝑦)=1
𝜎2𝜋𝑒(𝑦−𝜇)22𝜎2
𝑓𝑜𝑟 < 𝑦 < ∞ 𝜎 > 0 𝐸(𝑌)= 𝜇 𝑉(𝑌)= 𝜎2 𝑚(𝑡)= 𝑒𝜇+𝜎2𝑡2
2
𝑆2= (𝑦𝑖−𝑦
)2
𝑛
𝑖=0𝑛−1
P(A)
))P(EE|P(A
A)|P(E ii
i=
E(bY)=bE Y
( )
and V(bY)=b2V Y
( )
𝜇 = 𝐸(𝑌)=𝑦 𝑝(𝑦)
𝑎𝑙𝑙 𝑦 𝐸[𝑔(𝑌)] =𝑔(𝑦) 𝑝(𝑦)
𝑎𝑙𝑙 𝑦
𝜎2= 𝐸[(𝑌 𝜇)2]= (𝑦𝜇)2 𝑝(𝑦)
𝑎𝑙𝑙 𝑦 = 𝐸(𝑌2) 𝜇2
𝜇𝑘
= 𝐸(𝑌𝑘) 𝜇𝑘= 𝐸[(𝑌𝜇)𝑘] 𝑚(𝑡)= 𝐸(𝑒𝑡𝑌) 𝑑𝑘𝑚(𝑡)
𝑑𝑡𝑘]𝑡=0 = 𝑚(𝑘)(0)= 𝜇𝑘
𝐹(𝑦)= 𝑃(𝑌 𝑦) 𝑓𝑜𝑟 < 𝑦 <
𝑓(𝑦)=𝑑𝐹(𝑦)
𝑑𝑦 = 𝐹′(𝑦) 𝐹(𝑦)=𝑓(𝑡)𝑑𝑡
𝑦
−∞ 𝑃(𝑎 < 𝑌 < 𝑏)= 𝐹(𝑏) 𝐹(𝑎)=𝑓(𝑦)𝑑𝑦
𝑏
𝑎
𝐸(𝑌)=𝑦𝑓(𝑦)𝑑𝑦
−∞ 𝐸(𝑔(𝑌)) = 𝑔(𝑦)𝑓(𝑦)𝑑𝑦
−∞

Partial preview of the text

Download Midterm Formula Sheet for Probability and Statistics and more Study notes Statistics in PDF only on Docsity!

Midterm Formula Sheet

𝑦− 1

2

𝑡

𝑡

p ( y ) =

r

y

æ

è

ç

ö

ø

÷

N - r

n - y

æ

è

ç

ö

ø

÷

N

n

æ

è

ç

ö

ø

÷

for y = 0,1,2,..., n y £ r , n - y £ N - r E ( Y ) =

nr

N

V ( Y ) = n

r

N

æ

è

ç

ö

ø

÷

N - r

N

æ

è

ç

ö

ø

÷

N - n

N - 1

æ

è

ç

ö

ø

÷

𝜆

𝑦

𝑒

−𝜆

𝑦!

𝜆(𝑒

𝑡

− 1 )

2

1

1

2

1

2

2

1

2

𝑡𝜃

2

𝑡𝜃

1

2

1

−(𝑦−𝜇)

2

2 𝜎

2

2

𝜇+

𝜎

2

𝑡

2

2

2

∑ (𝑦

𝑖

−𝑦̅ )

2

𝑛

𝑖= 0

𝑛− 1

P(A)

P(A|E)P(E )

P(E |A)

i i

i

E(bY) = bE ( Y ) and V(bY) = b

2

V Y ( )

𝑎𝑙𝑙 𝑦

[

)]

𝑎𝑙𝑙 𝑦

2

= 𝐸[(𝑌 − 𝜇)

2

] = ∑ (𝑦 − 𝜇)

2

𝑎𝑙𝑙 𝑦

2

2

𝑘

𝑘

𝑘

= 𝐸[(𝑌 − 𝜇)

𝑘

] 𝑚(𝑡) = 𝐸(𝑒

𝑡𝑌

𝑑

𝑘

𝑚(𝑡)

𝑑𝑡

𝑘

]

𝑡= 0

( 𝑘

)

𝑘

𝑑𝐹(𝑦)

𝑑𝑦

𝑦

−∞

𝑏

𝑎

−∞

−∞