Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

digital design m morris mano 5th edition, Lecture notes of Computer Vision

digital design m morris mano 5th edition

Typology: Lecture notes

2017/2018

Uploaded on 09/27/2018

rm-k
rm-k 🇹🇷

1 document

1 / 14

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Solution to Problems
Chapter 4 & 5
“Digital Design” by M. Morris Mano
ECE 223
Fall 2005
Amir Khatibzadeh
aakhatib@optimal.vlsi.uwaterloo.ca
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe

Partial preview of the text

Download digital design m morris mano 5th edition and more Lecture notes Computer Vision in PDF only on Docsity!

Solution to Problems

Chapter 4 & 5

“Digital Design” by M. Morris Mano

ECE 223 Fall 2005

Amir Khatibzadeh

aakhatib@optimal.vlsi.uwaterloo.ca

4-23 A^1 A^0 E

D^0

= (A

+A 1

+E’)’=A 0

’A 1

’E 0

D^1

= (A

+A 1

’+E’)’=A 0

’A 1

E 0

D^2

= (A

’+A 1

+E’) =A 0

A 10

’E

D^3

= (A

’+A 1

’+E’) =A 0

A 10

E

4-28^ F= x (y + y’) z + x’y’z’ =^1

Σ^ (0, 5, 7)

F= x y’z’ + x’y (z + z’) =^2

Σ^ (2, 3, 4)

F= x’y’z + x y (z + z’) =^3

Σ^ (1, 6, 7)

3 x 8Decoder

F^1 F^2 F^3

x y z

(^221202)

8 x 1MUX 8 x 1MUX

S^0 S^1 S^201234567 S^0 S^1 S^201234567

S^0 S^1 S^2 S^3

2 x 1MUX

Y

S 0 1

4 x 1MUX

S^0 S^2 I^0 I^1 I^2 I^3

Y^

F

A B C

A B C D

F

AB=00F=D AB=01F=C’D’=(C+D)’AB=10F=CD AB=11F=

D

D

CP^

C

R=(D+C’)’= D’C

S=D.C

Q Q’

C

S=(D’+C’)’= D.C

D^

Q Q’

R=D’C

5-1 (a)

5-1 (b)

5-4^ P

N

Q(t+1)

Q(t)

Q’(t)

5-4(a)

P^

N^

Q(t) Q(t+1)

5-4(b)

Q(t)

Q(t+1)

P

N

X

X

X^

X^

5-4(c)

5-4(d)

Connect P and N togetherQ(t+1)= PQ’+NQ

1 1

1

1

P

N

Q(t)

x

CP

A B

y

z

D^ Q Q’^ D

x’y+xA

5-6 (a)

PresentStateAB^00011011

NextStateAB^01100000

FF TA^0111

InputsTB^1101

TA = A + BTB = A’ + BRepeated Sequence

PresentStateAB^00000000010101011010101011111111

Inputsxy^00011011000110110001101100011011

NextStateAB^10001101010110111010001010101010

Outputz^0000100000011001

5-10 (b)

FF InputsJ K^ A^ A

J B

KB

1^ 5-10 (c)

1 1

1

1

1

1

1

1

1

1

B

x

00

xy

AB 0001 1110

A^ A (t+1)=Ax’+ Bx + Ay+ A’B’y’

1

1

1

1

1 00

xy

AB 0001 1110^ B (t+1)=A’B’x+ A’B’(x’+y)