Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

devre teorisi örnek soruların çözümleri, Exercises of Circuit Theory

devre 2 teorisi örnek soruların çözümleri

Typology: Exercises

2019/2020

Uploaded on 05/26/2020

ummuhan-kurtaran
ummuhan-kurtaran 🇹🇷

5

(1)

2 documents

1 / 5

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Devre Teorisi-II Ödev-1 Cevap Anahtarı
Cevap-1
[a] 𝐿{20e500(t−10)𝑢(t10)}=20e10s
(𝑠+500)
[b] 𝑓(𝑡)=(5𝑡+20)𝑢(𝑡+4)(10𝑡+20)𝑢(𝑡+2)+(10𝑡20)𝑢(𝑡2)
(5𝑡20)𝑢(𝑡4)
=5(𝑡+4)𝑢(𝑡+4)10(𝑡+2)𝑢(𝑡+2)+10(𝑡2)𝑢(𝑡2)5(𝑡4)𝑢(𝑡 4)
𝐹(𝑠)=5[𝑒4𝑠 2𝑒2𝑠 +2𝑒−2𝑠 𝑒4𝑠]
𝑠2
[c] 𝐿{𝑡}=1
𝑆2 bu nedenle 𝐿{𝑡𝑒𝑎𝑡}=1
(𝑠+𝑎)2
[d] 𝑓(𝑡)= 𝑐𝑜𝑠ℎ𝑡.𝑐𝑜𝑠ℎƟ+𝑠𝑖𝑛ℎ𝑡.𝑠𝑖𝑛ℎƟ
𝐿{𝑐𝑜𝑠ℎ𝑡}=𝑠
𝑠2−1 𝐿{𝑐𝑜𝑠ℎ𝑡}=1
𝑠2−1
𝐿{cosh(𝑡+Ɵ)} =𝑐𝑜𝑠Ɵ[𝑠
(𝑠21)]+ 𝑠𝑖𝑛ℎƟ[1
𝑠21]=𝑠𝑖𝑛ℎƟ+𝑠[𝑐𝑜𝑠ℎƟ]
(𝑠21)
Cevap-2
[a] 𝑓(𝑡)=(−8𝑡80)[𝑢(𝑡+10)𝑢(𝑡+5)]+8𝑡[𝑢(𝑡+5)𝑢(𝑡5)]+
(−8𝑡+80)[𝑢(𝑡5)𝑢(𝑡10)]
=−8(𝑡+10)𝑢(𝑡+10)+16(𝑡+5)𝑢(𝑡+5)16(𝑡5)𝑢(𝑡5)
+8(𝑡10)𝑢(𝑡10)
𝐹(𝑠)=8[−𝑒10𝑠+2𝑒5𝑠 2𝑒−5𝑠 +𝑒10𝑠]
𝑠2
[b]
pf3
pf4
pf5

Partial preview of the text

Download devre teorisi örnek soruların çözümleri and more Exercises Circuit Theory in PDF only on Docsity!

Devre Teorisi-II Ödev- 1 Cevap Anahtarı

Cevap- 1

[a] 𝐿{ 20 e

− 500

( t− 10

)

𝑢(t − 10 )} =

20 e

−10s

(𝑠+ 500 )

[b] 𝑓

( 𝑡

)

( 5 𝑡 + 20

) 𝑢

( 𝑡 + 4

) −

( 10 𝑡 + 20

) 𝑢

( 𝑡 + 2

)

( 10 𝑡 − 20

) 𝑢

( 𝑡 − 2

) −

( 5 𝑡 − 20 )𝑢(𝑡 − 4 )

= 5 (𝑡 + 4 )𝑢(𝑡 + 4 ) − 10 (𝑡 + 2 )𝑢(𝑡 + 2 ) + 10 (𝑡 − 2 )𝑢(𝑡 − 2 ) − 5 (𝑡 − 4 )𝑢(𝑡 − 4 )

𝐹

( 𝑠

)

5 [𝑒

4 𝑠

− 2 𝑒

2 𝑠

  • 2 𝑒

− 2 𝑠

− 𝑒

− 4 𝑠

]

𝑠

2

[c] 𝐿

{ 𝑡

}

1

𝑆

2

bu nedenle 𝐿

{ 𝑡𝑒

−𝑎𝑡

}

1

( 𝑠+𝑎

)

2

[d] 𝑓

( 𝑡

) = 𝑐𝑜𝑠ℎ𝑡. 𝑐𝑜𝑠ℎƟ + 𝑠𝑖𝑛ℎ𝑡. 𝑠𝑖𝑛ℎƟ

𝐿

{ 𝑐𝑜𝑠ℎ𝑡

}

𝑠

𝑠

2

− 1

𝐿

{ 𝑐𝑜𝑠ℎ𝑡

}

1

𝑠

2

− 1

𝐿{cosh(𝑡 + Ɵ)} = 𝑐𝑜𝑠ℎƟ [

𝑠

( 𝑠

2

− 1

)

] + 𝑠𝑖𝑛ℎƟ [

1

𝑠

2

− 1

] =

𝑠𝑖𝑛ℎƟ + 𝑠[𝑐𝑜𝑠ℎƟ]

(𝑠

2

− 1 )

Cevap- 2

[a] 𝑓

)[

)]

[

)]

(− 8 𝑡 + 80 )[𝑢(𝑡 − 5 ) − 𝑢(𝑡 − 10 )]

8 [−𝑒

10 𝑠

5 𝑠

− 5 𝑠

− 10 𝑠

]

2

[b]

𝑓

(𝑡) = − 8 [𝑢(𝑡 + 10 ) − 𝑢(𝑡 + 5 )] + 8 [𝑢(𝑡 + 5 ) − 𝑢(𝑡 − 5 )]

( − 8

)[ 𝑢

( 𝑡 − 5

) − 𝑢

( 𝑡 − 10

)]

= − 8 𝑢(𝑡 + 10 ) + 16 𝑢(𝑡 + 5 ) − 16 𝑢(𝑡 − 5 ) + 8 𝑢(𝑡 − 10 )

𝐿

{ 𝑓

( 𝑡

)}

8 [−𝑒

10 𝑠

  • 2 𝑒

5 𝑠

− 2 𝑒

− 5 𝑠

  • 𝑒

− 10 𝑠

]

𝑠

[c]

𝑓

′′

( 𝑡

) = − 8 δ

( t + 10

)

  • 16 δ

( t + 5

) − 16 δ

( t − 5

)

  • 8 δ

( t − 10

)

𝐿

{ 𝑓

′′

( 𝑡

)} = 8 [−𝑒

10 𝑠

  • 2 𝑒

5 𝑠

− 2 𝑒

5 𝑠

− 2 𝑒

− 5 𝑠

  • 𝑒

− 10 𝑠

]

Cevap- 3

[a] 𝐼

𝑔

5 𝑠

𝑠

2

  • 400

1

𝑅𝐶

1

𝐿𝐶

1

𝐶

+ 𝐶[𝑠𝑉(𝑠) − 𝑣( 0

)] = 𝐼

𝑔

[

+ 𝑠𝐶] = 𝐼

𝑔

𝑔

𝑔

2

𝑔

2

2

2

2

2

2

2

[b] 𝐹(𝑠) =

𝐾

1

𝑠

2

𝐾

2

𝑠

𝐾

3

( 𝑠+ 5

)

2

𝐾

4

𝑠+ 5

𝐾 1

=

25 (𝑠 + 4 )

2

(𝑠 + 5 )

2

|

𝑠= 0

= 16

𝐾

2

=

𝑑

𝑑𝑠

[

25 (𝑠 + 4 )

2

( 𝑠 + 5

)

2

] = [

25 ( 2 )(s + 4 )

( s + 5

)

2

25 ( 2 )(s + 4 )

2

( s + 5

)

3

]

𝑠= 0

= 1. 6

𝐾 3

=

25 (𝑠 + 4 )

2

𝑠

2

|

𝑠=− 5

= 1

𝐾

4

=

𝑑

𝑑𝑠

[

25 (𝑠 + 4 )

2

𝑠

2

] = [

25 ( 2 )(s + 4 )

s

2

25 ( 2 )(s + 4 )

2

s

3

]

𝑠=− 5

= − 1. 6

𝑓

( 𝑡

) = [ 16 𝑡 − 1. 6 + 𝑡𝑒

− 5 𝑡

− 1. 6 𝑒

− 5 𝑡

]𝑢(𝑡)

[c]

2

1

2

1

𝑠=− 6

2

𝑠=− 9

𝑓(𝑡) = 25 δ(t) + [ 8 e

−6t

  • 12 e

−9t

]u(t)

[d]

1

2

1

6 𝑠+ 42

𝑠+ 5

𝑠=− 2

2

𝑠=− 5

𝑓(𝑡) = 5 δ

(𝑡) − 15 δ(t) + [ 10 e

−2t

− 4 𝑒

− 5 𝑡

]𝑢(𝑡)