










Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Circuit analysis implementation in s domain
Typology: Assignments
1 / 18
This page cannot be seen from the preview
Don't miss anything!
2.1 Buck converter
2.1.1 Operation modes 2.1.2 Voltage transfer function
2.1.3 Current modes (CCM, DCM)
2.1.4 Capacitor current 2.2 Boost converter
2.2.1 Operation modes
2.2.2 Voltage transfer function 2.3 Buck-Boost converter
2.4 Comparison between topologies
2.5 Simulation of SMPS 2.5.1 The simulations problem
2.5.2 Basics of average model of SMPS 2.5.3 Example: Boost average model simulations
Prof. S. Ben-Yaakov , DC-DC Converters [2- 2]
t
ON ON ON
t
ON ON ON
control
switch
t on
t off
TS
s
s T
f =
D or D T
t on s
on = →
t off s
off = →−
Switch frequency:
Duty Cycle:
S
Vin D
L
C
R
control
Prof. S. Ben-Yaakov , DC-DC Converters [2- 3]
At steady state I (^) a=Ib
S
V (^) in D
L
C
R
S
Vin D
L
C
R
V (^) L
I (^) L
t (^) s
t
V (^) in-V (^) o
-V (^) o
I (^) a Ib t
Self commutation
V L
I (^) L
t (^) s
t
Vin -Vo
I (^) a t
Commutation
In this case
Inductor current waveform at steady state
L
V (^) in −Vo
ton
t
I (^) L
t (^) off
L
Vo −
∆ I
S
Vin D
C
R
ton
t (^) off
Prof. S. Ben-Yaakov , DC-DC Converters [2- 5]
The ∆ I method
Left triangle
on
in ot
L
Right triangle
off
o (^) t
L
off
o on
in o t L
t L
on s
on
on off
on
in
o (^) D
T
t
t t
t
V
= (^) Independent of L!
V (^) in −Vo
t (^) on
t
t (^) off
Vo −
Prof. S. Ben-Yaakov , DC-DC Converters [2- 6]
-V o
V L
t off t
V (^) in-V (^) o
t on
Ts
At steady state, over one switching cycle:
VL = 0 ;
on in
o D V
S (^) +=(Vin −Vo)⋅ton ;
S (^) −=(−Vo )⋅toff ;
S
Vin D
C
R
ton
toff
V (^) o
V (^) L
The average voltage method
t (^) on
t
I L
t ' off T s
I pk
The ∆ I method
off
o on
in o pk t L
V t L
V V I = ′
out
in out on off V
(V V )D D
⋅ +
− = T T(D D ) L
V V
2
1
T
1 I (^) on S on off
in o
S
AV
R
V I (^) AV = o
) V
V V T D( 1 L
V V
2
1 I o
in o on on
in o AV
− ⋅ +
2 Sin o
2 R( Vin −Vo)DonTV= 2 LV
= + − 1 RDT
8 L 1 4 L
RDT
V
V
s
2 on
s
2 on
in
o
Prof. S. Ben-Yaakov , DC-DC Converters [2- 11]
t (^) on
t t (^) off
Ts
L
Vo − L
V (^) in −Vo
IL
L 2
L (^) min
I (^) av
z For CCM L > L (^) min
z In Buck (^) off pk av min
o t I 2 I L
s
off
avs
o off min 2 f
2 If
Prof. S. Ben-Yaakov , DC-DC Converters [2- 12]
A BUCK converter has a following characteristics:
Output voltage: Output current:
Input voltage: Frequency:
Current mode: CCM
Find:
Vo = 5 V I (^) out =Iav= 10 A
Vin = 10 V fs = 100 kHz
L min
2 If
5 avs
o off min
on off on in
o
= μ ⋅ ⋅
L
t
av
t
av
t
Capacitor current
S
Vin D
L
I C^ R L I^ C (^) I control R
V (^) o
C L R
I =I −I
z Assumption:
V 0 has small ripple
Prof. S. Ben-Yaakov , DC-DC Converters [2- 14]
z V (^) o > V (^) in Why ??
in
X
o
Prof. S. Ben-Yaakov , DC-DC Converters [2- 15]
V (^) in
L
C R
Vo
V (^) in
L
C R
V (^) o
VL
I (^) L
t (^) s
t
V in
I (^) a t
V (^) L
I (^) L
t (^) s
t
V (^) in
V (^) in-V (^) o
I (^) a Ib t
S
V (^) in
L D
C R
V (^) o
S Vin D L
C R
V (^) o
S V (^) in D
L C R
V (^) o
S
L D
Basic Cell
L a
b
c
Switched inductor
Prof. S. Ben-Yaakov , DC-DC Converters [2- 20]
Iin
t
Iin
t
Iin
t
Io
t
Io
t
Io
t
Source current Load current
Buck
Boost
Buck Boost
Continues current -> Low ripple component
Discontinues current -> High ripple component
Input and Output Currents
Prof. S. Ben-Yaakov , DC-DC Converters [2- 21]
o
−
•The problematic part : Switched Assembly
Time domain (cycle-by-cycle) -Transient
Switched Assembly into an equivalent
circuit which is SPICE compatible
Modulator Control
D Ve
Vin
Assembly
Switched Vo
−
Prof. S. Ben-Yaakov , DC-DC Converters [2- 23]
−
−
−
b d^ c
a
C (^) f
RLoad
Vout
Vin IL
Ib (^) IC
Vout (^) Vout
RLoad RLoad Cf Cf
L
a d (^) c
b
IL IC Ib Vin Vin
b on
T (^) L
Ib IL
IC
d
c
L
Buck Boost
Buck −Boost
T on
−
Prof. S. Ben-Yaakov , DC-DC Converters [2- 24]
T (^) on - switch conduction time
T (^) off - diode conduction time
T (^) DCM - no current time (in DCM)
b L^ a
c
b Ton
Toff
c
a
b
c
Ib
Ic
a a
Gb
Gc
Ia
b
c
Ia =IL a
I (^) b =IL⋅D on
Ic =IL⋅D off
G (^) a , G (^) b ,C (^) c - current
dependent sources
c L off
b L on
a L
Prof. S. Ben-Yaakov , DC-DC Converters [2- 29]
L
DerivingI
L
L
dt
dI
dt
dI (^) L L L L = ⇒ =
Prof. S. Ben-Yaakov , DC-DC Converters [2- 30]
b
c
a L
V(a,b)
V(a,c)
Ton (^) Toff
Ts
on off
S
on off L
V(a,b)D V(a,c)D
V(a,b)T V(a,c)T V
b
c
a
Ga
Gb
Gc
rL
Topology independent!
E (^) L =V(a,b)⋅Don+V(a,c)⋅D off
Gc =IL⋅D off
Gb =IL⋅D on
Ga =I L
b
c
a
L on
T
Toff
Prof. S. Ben-Yaakov , DC-DC Converters [2- 32]
b
c
a
Ga Gb
Gc
Co Ro
Vin
Vo
EL
L
V(a,b)
V( a,c) rL
E (^) L =[V 0 −Vin]⋅Don+[ 0 −V 0 ]⋅Doff
Ga =I(L) Gb=I(L)⋅Don Gc=I(L)⋅D off
S
Vin D
L V (^) o
Ro
Co
b
c
a
Prof. S. Ben-Yaakov , DC-DC Converters [2- 33]
Co
in Ro
Vo
Ein
Gb
Co o
Vin
Vo
Polarity: (voltage and current
sources) selected by inspection
Ein −Vo→VL
Ein =Vin⋅D on
Gb =IL⋅D on
V in
Rdson (^) b
c
a
Gb
Gc
Co
Ro
rc
a
rL
E (^) L =(Va−Vb)⋅Don+(Va−Vc)⋅Doff
Gc =IL⋅D off
Gb =IL⋅D on
Ga =I L
Prof. S. Ben-Yaakov , DC-DC Converters [2- 38]
IL and D (^) on are time dependent variables {IL (t), D (^) on (t) }
D (^) on is not an electrical variable
Prof. S. Ben-Yaakov , DC-DC Converters [2- 39]
D (^) on is coded into voltage
on
Running SPICE simulation
DC (steady state points) - as is
TRAN (time domain) - as is
AC ( small signal) - as is
Prof. S. Ben-Yaakov , DC-DC Converters [2- 41]
I L
b
c
a L^
Ton
Toff
Ton Toff
Toff
Ts
t
L ILpk
on s
s on off 1 D T
T' (^) off =Ts−T on
Prof. S. Ben-Yaakov , DC-DC Converters [2- 42]
1.The average inductor current in DCM
VL (^) V(a,b)
V(a,c)
Ts
Ton Toff
T'off
t
b
c
a L
V(a,b)
V(a,c)
Ton
VL =V(a,b)Don+V(a,c)DoffasinCCM
b
c
a
L
b
c
a
Ga
Gb
Gc
Ga ≡IL
on off
L on b D D
on off
L off c D D
E (^) L =V(a,b)⋅Don+V(a,c)⋅D off
= − − on
on
L s off on D V(a,b)D
2 ILf D min( 1 D),
rL
Prof. S. Ben-Yaakov , DC-DC Converters [2- 47]
Rsw {Rsw}
EDoff
min(2I(Lmain)Lmain/(Tsv(a,b)V(Don))-V(Don),1-V(Don))
etable
OUT+ OUT-
IN+ IN-
Resr {Resr}
Gc
V(Doff)*I(Lmain)/(V(Don)+V(Doff))
GVALUE
OUT+
OUT- IN+
IN-
PARAMETERS: LMAIN = 75u COUT = 220u RLOAD = 10
Doff
Gb
V(Don)*I(Lmain)/(V(Don)+V(Doff))
GVALUE
OUT+
OUT- IN+
IN-
0
Lmain {Lmain}
RLoad {RLoad}
Dbreak
Dmain
VDon {VDon}
Rinductor
{Rinductor}
EL
(V(Don)V(a,b)+V(Doff)V(a,c))
EVALUE
OUT+ OUT-
IN+ IN-
1
0
PARAMETERS: FS = 100k TS = {1/fs}
b
Vin_DC
{Vin_DC}
a Cout {Cout}
PARAMETERS: RESR = 0. RINDUCTOR = 0. RSW = 0.
PARAMETERS: VIN_DC = 10v VDON = 0.
c out
Ga
I(Lmain)
GVALUE
OUT+ OUT-
IN+ IN-
Don
S
L
Co o R Vin
D Vo
Prof. S. Ben-Yaakov , DC-DC Converters [2- 48]
S
L
Co o R Vin
D Vo
Prof. S. Ben-Yaakov , DC-DC Converters [2- 50]
S
L
Co o R Vin
D Vo
Prof. S. Ben-Yaakov , DC-DC Converters [2- 51]
Ti me
3 0 ms 3 5 ms 4 0 ms 4 5 ms 5 0 ms V( o u t )
1 8 V
1 9 V
2 0 V
2 1 V
SEL>>
V( a )
9 V
1 0 V
1 1 V
1 2 V