Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Calculus Differential and Integral Exercises, Exercises of Calculus

ejercicios para calculo, en el cual se logra entender los pasos para resolverlos en caso de que no entiendan la materia inplantida y con los resultados incluidos

Typology: Exercises

2018/2019

Uploaded on 09/17/2019

oscar-gallardo-1
oscar-gallardo-1 🇺🇸

1 document

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
FORMULARIO DE
CÁLCULO DIFERENCIAL
E INTEGRAL
V
ER
.3.6
Jesús Rubí Miranda (jesusrubi1@yahoo.com)
http://mx.geocities.com/estadisticapapers/
http://mx.geocities.com/dicalculus/
VALOR ABSOLUTO
11
11
si 0
si 0
y
0 y 0 0
ó
ó
nn
kk
kk
nn
kk
kk
aa
aaa
aa
aa aa
aa a
ab a b a a
ab a b a a
==
==
=−<
=−
≤−
≥==
==
+≤ +
∏∏
∑∑
()
()
/
pq pq
p
pq
q
q
ppq
ppp
pp
p
q
pq p
aa a
aa
a
aa
ab a b
aa
bb
aa
+
⋅=
=
=
⋅=
=


=
EXPONENTES
10
log
log log log
log log log
log log
log ln
log log ln
log log y log ln
x
a
aaa
aaa
r
aa
b
a
b
e
Nx a N
MN M N
MMN
N
Nr N
NN
Naa
NN NN
=⇒ =
=+
=−
=
==
==
LOGARITMOS
ALGUNOS PRODUCTOS
()
()()
()()()
()()()
()( ) ()
()() ( )
()()
()
()
()
22
222
222
2
2
332 23
332 23
222
2
2
33
33
acd acad
ab ab a b
ab ab ab a abb
ab ab ab a abb
xb xd x bdxbd
ax b cx d acx ad bc x bd
a b c d ac ad bc bd
ab a ab ab b
ab a ab ab b
abc abc
⋅+ = +
+⋅−=
+⋅+= + = + +
−⋅−= = +
+⋅+ = ++ +
+⋅ + = + + +
+⋅+ = + + +
+=+ + +
−= +
++ = + +
2222ab ac bc+++
()
()
()
()
()
()
()
2233
32 23 44
43 22 34 5
1
1
n
nk k n n
k
ab a abb a b
abaababb ab
ab a abab ab b a b
ab a b a b n
−−
=
−⋅ + + =−
−⋅ + + + =
−⋅ + + + + =

−⋅ =


5
()
()
()
()
()
()
()
()
2233
32 23 44
43 22 34 55
5 4 32 23 4 5 6 6
ab a abb a b
abaababb a b
ab a abab ab b a b
abaababababb ab
+⋅ + = +
+⋅ + =
+⋅ + + = +
+⋅ + + =
CA
CO
HIP
θ
Gráfica 4. Las funciones trigonométricas inversas
arcctg x, arcsec x, arccsc x:
() ()
() ()
() ()
() ()
11
sen sen 2 sen cos
22
11
sen sen 2 sen cos
22
11
cos cos 2 cos cos
22
11
cos cos 2sen sen
22
αβ αβ αβ
αβ αβ αβ
αβ αβ αβ
αβ αβ αβ
+= +
−= +
+= +
−= +
-5 0 5
-2
-1
0
1
2
3
4
arc ctg x
arc sec x
arc csc x
()()
()()
11
1
11
1
1 impar
1 par
nknk k n n
k
nknk k n n
k
ab a b a b n
ab a b a b n
+−−
=
+−−
=

+⋅ = +



+⋅ =


()
()
12
1
1
11
111
10
1
n
nk
k
n
k
nn
kk
kk
nnn
kk k k
kkk
n
kk n
k
aa a a
cnc
ca c a
ab a b
aa aa
=
=
==
===
=
+++=
=
=
+= +
−=
∑∑
∑∑
SUMAS Y PRODUCTOS
n
θ sen cos tg ctg sec csc
0 1 0 1
12 32 13 3 23 2
12 12 1 1 2 2
60 32 12 3 13 2 23
90 01
0
0
()
sen
tg tg cos cos
αβ
αβ αβ
±
±=
30
45
()()
()()
()()
1
sen cos sen sen
2
1
sen sen cos cos
2
1
cos cos cos cos
2
αβ αβ αβ
αβ αβ αβ
αβ αβ αβ
⋅= + +


⋅= +

⋅= + +


22
22
22
sen cos 1
1ctg csc
tg 1 sec
θθ
θθ
θθ
+=
+=
+=
IDENTIDADES TRIGONOMÉTRICAS
1
[]
[]
sen ,
22
cos 0,
tg ,
22
1
ctg t g 0,
1
sec cos 0,
1
csc sen ,
22
yxy
yxy
yxy
yx y
x
yx y
x
yx y
x
ππ
π
ππ
π
π
ππ

=∠


=∠
=∠
=∠ =∠
=∠ =∠

=∠ =∠


tg tg
tg tg ctg ctg
αβ
αβ αβ
+
⋅= +
()
()
()
sen sen
cos cos
tg tg
θθ
θθ
θθ
−=
−=
−=
senh 2
cosh 2
senh
tgh cosh
1
ctgh tgh
12
sech cosh
12
csch senh
xx
xx
xx
xx
xx
xx
xx
xx
ee
x
ee
x
xee
xxee
ee
xxee
xxee
xxee
=
+
=
==
+
+
==
==
+
==
FUNCIONES HIPERBÓLICAS
()
()
()
()
()
()
()()
()()
()
sen 2 sen
cos 2 cos
tg 2 tg
sen sen
cos cos
tg tg
sen 1 sen
cos 1 cos
tg tg
n
n
n
n
n
θπ θ
θπ θ
θπ θ
θπ θ
θπ θ
θπ θ
θπ θ
θπ θ
θπ θ
+=
+=
+=
+=
+=
+=
+=
+=
+=
() ()
()
()
()
()
()
()
1
1
1
2
1
232
1
3432
1
4543
1
2
1
121
2
= 2
1
11
1
2
123
6
12
4
161510
30
135 2 1
!
k
n
n
k
k
n
k
n
k
n
k
n
k
n
k
n
ak d an d
nal
rarl
ar a rr
knn
knnn
knnn
knnnn
nn
nk
nn
k
=
=
=
=
=
=
=
+− = +−

+
−−
==
−−
=+
=++
=++
=++
+++ + =
=

=


()
()
0
!,
!!
n
nnk k
k
kn
nkk
n
xy x y
k
=

+=


Gráfica 1. Las funciones trigonométricas: ,
cos x, tg x:
sen x
-8 -6 -4 -2 0 2 4 6 8
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
sen x
cos x
tg x
[
{}
]
{} {}
senh :
cosh : 1,
tgh : 1, 1
ctgh : 0 , 1 1,
sech : 0, 1
csch : 0 0
→∞
→−
−→
−→


()
()()
()
()
sen 0
cos 1
tg 0
21
sen 1
2
21
cos 0
2
21
tg 2
n
n
n
n
n
n
n
n
π
π
π
π
π
π
=
=−
=
+

=−


+

=


+

=∞


Gráfica 2. Las funciones trigonométricas ,
sec x, ctg x:
csc x
Gráfica 5. Las funciones hiperbólicas ,
, :
senh x
cosh xtgh x
()
12
12 12
12
!
!! !
k
nn
nn
kk
k
n
xx x xx x
nn n
+++ =

-8 -6 -4 -2 0 2 4 6 8
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
csc x
sec x
ctg x
-5 0 5
-4
-3
-2
-1
0
1
2
3
4
5
senh x
cosh x
tgh x
sen cos 2
cos sen 2
π
θθ
π
θθ

=−



=+


()
3.14159265359
2.71828182846e
π=
=
CONSTANTES
()
()
()
()
22
2
2
2
2
sen sen cos cos sen
cos cos cos sen sen
tg tg
tg 1tgtg
sen 2 2 sen cos
cos2 cos sen
2tg
tg2 1tg
1
sen 1 cos 2
2
1
cos 1 cos 2
2
1 cos2
tg 1 cos 2
αβ α β α β
αβ α β α β
αβ
αβ αβ
θθθ
θθθ
θ
θθ
θθ
θθ
θ
θθ
±= ±
±=
±
±=
=
=−
=
=−
=+
=+
1
sen csc sen
1
cos sec cos
sen 1
tg ctg
cos tg
CO
HIP
CA
HIP
CO
CA
θθ
θ
θθ
θ
θ
θθ
θθ
==
==
== =
TRIGONOMETRÍA
Gráfica 3. Las funciones trigonométricas inversas
arcsen x, arccos x, arctg x:
-3 -2 -1 0 1 2 3
-2
-1
0
1
2
3
4
arc sen x
arc cos x
arc tg x
radianes=180π
(
)
(
)
12
12
1
1
2
1
2
1
senh ln 1 ,
cosh ln 1 , 1
11
tgh ln , 1
21
11
ctgh ln , 1
21
11
sech ln , 0 1
11
csch ln , 0
xxx x
xxx x
x
xx
x
x
xx
x
x
xx
x
x
xx
xx
=++
+

=<


+

=>



±−

=<



+

=+


FUNCS HIPERBÓLICAS INVERSAS
pf2

Partial preview of the text

Download Calculus Differential and Integral Exercises and more Exercises Calculus in PDF only on Docsity!

FORMULARIO DE C^ ÁLCULO

D^ IFERENCIAL

E^ I^ NTEGRAL

VER^ .3.

Jesús Rubí Miranda (

jesusrubi1@yahoo.com

http://mx.geocities.com/estadisticapapers/ http://mx.geocities.com/dicalculus/^ VALOR ABSOLUTO

1

1 1 1

si^

si^

y 0 y^

n^ ó ó

n k^

k k^

kn nk

k k^

k

a^

a a^

a^ a a^

a a^ a

a^ a a^

a^

a

ab^

a b^

a^

a

a^ b

a^

b^

a^

a

=^

= = = ≥ = −^

≥^

=^

⇔^

=^

+^ ≤

+^

∏^

(^ ) (^

p^ q^ )^ /

p^ q p

p^ q q qp^

pq p p^

p p^

p p q p^ q^

p a^ a

a a^

a a a^

a a b^

a^ b a^

a b^

b a^

  • a ⋅^ = = = ⋅ =

^ ^

^ ^ 

EXPONENTES loglog^10

log^

log

log^

log^

log

log^

loglog^

ln

log^

log^

ln

log^

log^

y log

ln x a a^

a^

a

a^

a^

a

ra

a b a

b

e

N^ x

a

N

MN^

M^

N

M^

M^

N

NN^

r^

NN

N

N^

a^

a

N^

N^

N^

N

=^ ⇒

=^

= =^

=^

LOGARITMOS ALGUNOS PRODUCTOS^ (^

(^

) (^

(^

) (^

)^ (^

(^

) (^

)^ (^

(^

) (^

)^

(^

(^

) (^

)^

(^

(^

) (^

(^

(^

(^

2 2

2

2

2

2

2

2

2 2 3

3

2

2 3

3

3

2

2 3

2

2 2

a^ c

d^

ac^

ad

a^ b^

a^ b

a

b

a^ b^

a^ b

a

b^

a^

ab^

b

a^ b^

a^ b

a

b^

a^

ab^ b

x^ b^

x^ d^

x^

b^ d

x^

bd

ax^ b

cx

d^

acx^

ad^

bc x

bd

a^ b^

c^ d

ac

ad

bc

bd

a^ b^

a^

a b^

ab^

b

a^ b^

a^

a b^

ab^

b

a^ b^

c^

a^

b^ c

⋅^ +

+^ ⋅

−^

=^

+^ ⋅

+^

=^ +

−^ ⋅

−^

=^ −

+^ ⋅

+^

=^ +

+^

+^ ⋅

+^

+^

+^ ⋅

+^

=^

+^

+^

+^

=^ +

+^

−^

=^ −

+^

+^ +

+^

ab^

ac^

bc

+^

+^

(^

) (^

(^

) (^

(^

) (^

(^

2

3 3

3

2

2 3

4 4

4 3

2 2

3 4

5

1 n^ n^ k^1

k^

n^ n

k a^ b^

a^

ab^

b^

a^ b

a^ b^

a^

a b^

ab^

b^

a^ b

a^ b^

a^

a b^

a b^

ab^

b^

a^

b

a^ b^

a^ b

a^

b^

n

−^ − = −^ ⋅

+^

=^

−^ ⋅

−^ ⋅

+^

+^

=^ −

^

−^ ⋅

=^

−^

∀^ ∈

^

^

∑^

`

5

(^

) (^

(^

) (^

(^

) (^

(^

) (^

2

2

3 3

3 2

2

3

4 4

4 3

2 2

3 4

5 5

5 4

3 2

2 3

4 5

6

6

a^ b

a^

ab^

b^

a^

b

a^ b

a^

a b^

ab^

b^

a^ b

a^ b

a^

a b^

a b^

ab^

b^

a^ b

a^ b

a^

a b^

a b^

a b^

ab^

b^

a^ b

+^ ⋅

+^ ⋅

+^ ⋅

−^

+^

=^ +

+^ ⋅

−^

+^

−^

=^

−^

CA

CO

HIP θ

Gráfica 4. Las funciones trigonométricas inversasarcctg

x^ , arcsec

x^ , arccsc

x^ :^

(^

)^

(^

(^

)^

(^

(^

)^

(^

(^

)^

(^

sen^

sen^

2sen

cos 2

sen^

sen^

2sen

cos 2

cos^

cos^

2 cos^

cos 2

cos^

cos^

2sen

sen 2

α^

β^

α^ β

α^ β

α^

β^

α^ β

α^ β

α^

β^

α^ β

α^ β

α^

β^

α^ β

α^ β

+^

=^

+^

⋅^

−^

=^

−^

⋅^

+^

=^

+^

⋅^

−^

= −^

+^

⋅^

-^

0

5

(^43210) -1 -

arc ctg xarc sec xarc csc x

(^

)^

(^ )

(^

)^

(^ )

1

1

1

1

1 (^1 )

impar

par

n^

k^ n

k^ k^

n^

n

kn^

k^ n

k^ k^

n^

n

k a^ b

a^ b

a^

b^

n

a^ b

a^ b

a^

b^

n

+^ −

+^ −

^ =

+^ ⋅

−^

=^

+^

∀^ ∈

^

^

^

+^ ⋅

−^

=^

−^

∀^ ∈

^

^

(^

(^

1 2

1

1 1

1 1

1

1 1

0

1

n n^

kk

n kn^

n k^

k

k^

k n^

n^

n

k^ k

k^

k

k^

k^

k

n k

k^

n

a^ a k

a^

a

c^ nc ca^

c^ a a^ b

a^

b

a^

a^

= a a

= =^

= =^

=^

= − +^ =

+^ +

= = +^

=^

−^

=^

∑ ∑^

∑^

∑^

SUMAS Y PRODUCTOS ∑

n

θ^

sen^

cos^

tg^

ctg^

sec^

csc

D^

∞^

1 2^

3 2^

D^60

3 2^

1 2^

D^90

∞^

(^

sen tg^

tg^

cos^

α^ β cos

α^

β^

α^ ± β

±^

=^

D 30 D 45

(^

)^

(^

(^

)^

(^

(^

)^

(^

sen^

cos^

sen^

sen

21

sen^

sen^

cos^

cos

21

cos^

cos^

cos^

cos

2 α^

β^

α^ β

α^ β

α^

β^

α^ β

α^ β

α^

β^

α^ β

α^ β

⋅^

=^

−^

+^

^

^

⋅^

=^

−^

−^

^

^

⋅^

=^

−^

+^

^

^

2

2 2

2 2

2 sen^

cos^

1 ctg

csc tg^ θ^1 sec

θ θ^

θ θ^

θ +^

+^

IDENTIDADES TRIGONOMÉTRICAS

[^ ]

[^ ]

sen^

cos^

tg^

ctg^

tg^

sec^

cos^

csc^

sen^

y^

x^ y y^

x^ y y^

x^ y y^

x^

yx

y^

x^

yx

y^

x^

π^ π π π^ π yx

π π π^ π ^

= ∠^

∈^ −^

^

= ∠^

= ∠^

∈^ −

= ∠^

= ∠^

= ∠^

= ∠^

∈ ^

= ∠^

= ∠^

∈^ −^

^

tg^

tg

tg^

tg^

ctg^ α^ β ctg α^

β^

α^

β

⋅^

=^

(^ ) sen (^ ) ( )

sen cos^

cos tg^

tg θ^

θ θ^

θ θ^

θ −^ = −−^ = − = −

senh^

cosh^

(^2) senh tgh^

cosh^1 ctgh^

tgh^1

sech^

cosh^1

csch^

x^ senh

x x^

x x^

x x^

x x^

x x^

x x x x x

e^ ex e^ ex x

e^

e

x^

x^ e

ee e x^

x^ e

e x^

x^ e

e x^

x^ e − − − − − −^ e

− − − =

=^

=^

=^

=^

=^

=^ +

=^

=^ −

FUNCIONES HIPERBÓLICAS

(^

(^

(^

(^

(^

(^

(^

)^ (^

(^

)^ (^

(^

sen^

sen

cos^

cos

tg^

tg sen^

sen

cos^

cos

tg^

tg sen^

1 sen

cos^

1 cos

tg^

tg

n n

θ^ π^ n n n

θ θ^

π^

θ

θ^

π^

θ θ^ π

θ

θ^ π

θ

θ^ π

θ θ^

π^

θ

θ^

π^

θ

θ^

π^

θ +^

+^

+^

+^

+^

+^

= + =^

+^

=^ −

+^

(^

)^

(^

(^

(^

(^

(^

(^

(^

1

1 1

2 1 2

3

2

1 3

4

3 2

1 4

5

4

3

1

2

1

k!

n

n^ k kn kn kn kn k n k

n

a^ k

d

a^ n

d n a^

l r^

a^ rl

ar^

a^

r^

r

k^

n^

n k^

n^

n^

n

k^

n^

n^ n k^

n^

n^

n^ n n^

n

n^

k n^

n = k

− = = = = =

+^ − =

=^

+^ −

^

^

^

^

^

^

−^

=^

=^

=^

+^

=^

+^

=^

+^

+^

+^ +^

+^ +

∑ ∑ ∑ ∑ ∑ ∑ =∏ ^  =^ ^ 

(^

)^

!^ ,!! n^0 n^

n^ k^ k k

k^ n n^ k^

k n x^ y

x yk

+^

=^

^ ∑^ 

Gráfica 1. Las funciones trigonométricas:

cos^ x

, tg

x^ :

sen^ x

-8^ -

-^ -^

0 2

4

6 8

(^2) 1.5 (^1) 0.5 (^0) -0.5 -1 -1.5 -

sen xcos xtg x

[ { }^ ] { }^

senh :cosh :

tgh :^

ctgh :

,^1

sech :

csch :

→→^

→^ − −^

→^ −∞ −

∪^

→−^

→^

^

\

\ \ \ \ ^

\

(^ ) (^ )^

(^ )

(^ )

(^ )

sen^

cos^

tg^

sen^

cos^

tg^

n

n

n^ π n π n π n n n = =^ − = +π π π ^

 =^ −

^

^

^

^

^

^

Gráfica 2. Las funciones trigonométricas

sec^ x^

, ctg

x^ :

csc^ x

Gráfica 5. Las funciones hiperbólicas

,^

senh^

x

cosh^

x^ tgh

x

(^

)^

1 2

1 2

1 2 1 2

k

n^

n n^ n

k^

k k n

x^ x

x^

x^ x

x

n^ n^

n

+^ +

+^

=^

"^

-8^ -

-^ -^

0 2

4

6 8

2.5^2 1.5^1 0.5^0 -0.5^ -1 -1.5^ -2 -2.

csc xsec xctg x

-^

0

5

(^543210) -1 -2 -3 -

senh xcosh xtgh x

sen^

cos^

cos^

sen^

π^2 θ^

θ π θ^

^ θ

=^

=^

(^

CONSTANTES^ 3.14159265359 π =2.71828182846 e =

(^

(^

)^ (^

(^

2

2 2 sen^222

sen^

cos^

cos^

sen

cos^

cos^

cos^

sen^

sen

tg^

tg

tg^

1 tg

tg

sen 2

2sen

cos cos 2

cos

sen 2 tg tg 2^

1 tg^1 sen^

1 cos 2 21 cos^

1 cos 2 21 cos 2 tg^ α^ β^1 cos 2

α^

β^

α^

β

α^ β

α^

β^

α^

β

α^

β

α^ β

α^ β θ^

θ^

θ

θ^

θ^

θ θ θ^

θ θ^

θ

θ^

θ θ

θ^

θ ±^

=^

±^

±^

=^ − =^

=^

=^ +

sen^

csc^

sen^1

cos^

sec^

cos

sen^

tg^

ctg

cos^

tg

COHIPCAHIP

COCA

θ^

θ^

θ

θ^

θ^

θ

θ θ^

θ

θ^

θ

=^

=^

=^

=^

TRIGONOMETRÍA

Gráfica 3. Las funciones trigonométricas inversasarcsen

x^ , arccos

x^ , arctg

x^ :

-^ -^ -^

0

1

2

3

(^43210) -1 -

arc sen xarc cos xarc tg x

radianes=180π

D

(^

(^

1

2

1

2

1 1

2

1

2

1 senh^

ln^

cosh^

ln^

1 ,^

tgh^

ln^

,^

ctgh^

ln^

,^

sech^

ln^

, 0^

csch^

ln^

,^

x^

x^

x^

x

x^

x^

x^

x x x^

x x x x^

x x

x

x^

x x x x^

x

x^

x

−= − − − − −

+^

+^

∀^ ∈

=^

±^

−^

=^

^

^

^

=^

^

^

^

±^

^

=^

<^ ≤

^

^

^

^

=^

+^

^

^

FUNCS HIPERBÓLICAS INVERSAS

\

(^ )^

(^ )^

(^ ) (

)^

(^ )(

(^ )^ (^

)(^

(^ )^

(^ )^

(^ )^

(^ )

(^ )^ (^ )

(^ )^

(^

0

0

0

0

0 0

0 2

2

3 3

5

7

(^2 ) ''

'^

: Taylor ! '' 0 0

' 0^

: Maclaurin !

1

2!^

3!^

sen^

3!^

5!^

7!^

cos

n

n n^

n n

x

n f^ x^ n

x^ x

f^ x^

f^ x^

f^ x^

x^ x f^ x

x^

x nf^

x

f^ x^

f^

f^

x f^

x n x^

x^

x

e^

x^

n

x^

x^

x^

x

x^ x

n

x

− −

=^

+^

−^

+^ + =

+^

+^ +

=^ +^

+^

+^

+^ +

=^ −

ALGUNAS SERIES

"^

"^ (

)^

(^

(^

)^

(^ ) ( )

2

4

6

2 2 1

2

3

4

1

3

5

7

(^2 )

2!^

4!^

6!^

ln 1^

tg^

nn nn nn 2 1

x^

x^

x^

xn

x^

x^

x^

x

x^

x^

n

x^

x^

x^

x

x^ x

−− − −− n

−^

+^

−^

+^ + −

+^ =

−^

+^

−^

+^ +

∠^

=^ −

(^

(^

sen^2 22

cos

sen

cos^

sen

cos

au

au

au

au

e^ a

bu

b^

bu

e^

bu du

a^ b e^ a

bu

b^

bu

e^

bu du

a^

b

=^

=^

MAS INTEGRALES ∫ ∫

(^

(^

2 2

2

2

2 2 2

2

2

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

sen cos ln 1 ln 1 cos 1 sec

sen

2

2 ln 2

du^

ua

a^

u

ua

du^

u^

u^ a

u^

a du

u a u^ a^

u^

a^

a^

u

du^

a a^

u

u^ u^

a

u a^

a u^

a^

u

a^ u du

a^ u

a

u^

a

u^ a du

u^ a

u^

u^ a

= −∠=^

+^

±^

+^

=^ ∠

=^ ∠

−^

=^

−^

+^

±^

=^

±^

±^

+^

INTEGRALES CON ∫ ∫ ∫ ∫ ∫ ∫

(^

(^

2

2

2

2

2

2

2

2

2 2

1 tg 1 ctg^1 ln 21 ln 2 du^

u a^

a

u^

a

u a^

a

du^

u^ a

u

a a^ u

a

u^

adu

a^ u

u

a a^ a

u

a^

=^ u

=^

=^

INTREGRALES DE FRAC ∫ ∫ ∫−

(^

1

tgh^

ln cosh ctgh^

ln senh sech^

tg senh csch^

ctgh^

cosh 1 ln tgh

udu^

u udu^

u udu^

u

udu^

uu = = = ∠= − =

2 (^ ) (^ ) ( )

2 2

2

cosh^2

senh^

1 tgh

sech ctgh^

1 csch senh^

senh cosh^

cosh tgh^

tgh x^

x x^

x x^

x x^

x x^

x x^

x −^

−^

−^ = −

IDENTIDADES DE FUNCS HIP

(^

(^

(^

2

2 2

senh^

senh^

cosh^

cosh^

senh

cosh^

cosh^

cosh^

senh^

senh

tgh^

tgh

tgh^

1 tgh

tgh

senh 2

2senh

cosh

cosh 2

cosh

senh 2 tgh tgh 2^

x^ y^^1 tgh

x^

y^

x^

y

x^ y

x^

y^

x^

y

x^

y

x^ y

x^

y

x^

x^

x

x^

x^

x x x^

x ±^

=^

±^

=^

±^

=^ ± = =

=^ +

(^

(^

(^222)

senh^

cosh 2

cosh^

cosh 2

(^2) cosh 2

tgh^

cosh 2

x^

x x^

x x

x^

x =^

=^

=^

senh 2 tgh^

cosh 2

x 1 x^

x =^

2

2

2

discriminante

ax^

bx^ c

b^

b^

ac

x^

a

b^

ac +^ +

= −^ ±

⇒^

OTRAS^ (^

lim 1^00001

lim 1senlim^

1 coslim

lim^

lim^

ln

x x

x x x x

x x x

x^

e e xx xx xe xx x

  • → →∞ → → → →

^

^

^

LÍMITES

(^ )^

(^

)^

(^ )

( ) (^ ) (^ ) (^

(^ )

0

0

lim^1

lim

x^

x^

x

n^

n

f^ x^

x^ f

x

df^

y

D f^

x^

dx^

x^

x

d^ cdxd^ cx

c dxd^ cx

ncx dxd^

du^

dv^

dw

u^ v

w dx^

dx^

dx^

dx

d^

du cu^

c dx^

∆ → dx

∆ →

+ ∆^

−^

=^

=^

∆^

= = = ±^ ±^

±^

=^

±^

±^

DERIVADAS

"^

(^ ) (^

)^ (^

)^ (

(^ )

2 1 n^

n d^

dv^

du

uv^

u^

v

dx^

dx^

dx

d^

dw^

dv^

du

uvw^

uv^

uw^

vw

dx^

dx^

dx^

dx

v du dx

u dv dx

d^ udx^ v

v

d^

du u^

nu dx^

dx =^

=^

+^

^  =^ ^ 

2 1

2

(Regla de la Cadena) 1

donde

dF^

dF^ du dx^

du^

dx dudx^

dx dudF du dFdx^

dx du

x^ f

t

f^ t dy dt dydx^

dx dt

f^

t^

y^ f

t

=^

′^

=^

=^

′^

(^ ) (^

(^

(^ ) (^ ) (^ )^

1

ln

log log

log log^

0,^

ln a ln a u u u u v

v^

v

du dx d^

du

u dx^

u^

u^ dx

d^

e^ du u dx^

u^

dxe

d^

du u^

a^

a

dx^

u^

dx

d^

du e^

e dx^

dx d^

du a^

a^

a

dx^

dx

d^

du^

dv

u^

vu^

u u

dx^

dx^

dx

=^ −

=^ ⋅

=^

=^

⋅^

>^

=^ ⋅ =^

=^

+^

⋅^ ⋅

DERIVADA DE FUNCS LOG & EXP^ (^

(^

(^

(^

(^

(^

(^

2 sen^

cos cos^

sen tg^

sec ctg^

csc sec^

sec^

tg csc^

csc^

ctg

vers^

sen d^

du u^

u

dx^

dx

d^

du u^

u

dx^

dx

d^

du u^

u

dx^

dx

d^

du u^

u

dx^

dx

d^

du u^

u^ u

dx^

dx

d^

du

u^

u^

u

dx^

dx

d^

du u^

u

dx^

dx = = − = = − = = − =

DERIVADA DE FUNCIONES TRIGO^ (^

(^

(^

(^

(^

(^

(^

sen^

cos

tg^

ctg^

si^

sec^

si^

si^

csc^

si^

vers^

d^

du

u dx^

dxu

d^

du

u dx^

dxu

d^

du u dx^

dxu

d^

du u dx^

dxu

u

d^

du

u^

u

dx^

dx u^ u

u

d^

du

u^

u

dx^

dx u^ u

d^

u dx^

u^ u

∠^

=^

∠^

= −^

∠^

=^

∠^

= −^

+^

∠^

= ±^

⋅^ 

−^

−^

∠^

=^

⋅^ 

+^

∠^

DERIV DE FUNCS TRIGO INVER

du ⋅ 2 dx

2 2 senh^

cosh cosh^

senh tgh^

sech ctgh^

csch sech^

sech^

tgh

csch^

csch^

ctgh

d^

du u^

u

dx^

dx

d^

du u^

u

dx^

dx

d^

du u^

u

dx^

dx

d^

du u^

u

dx^

dx

d^

du

u^

u^

u

dx^

dx

d^

du

u^

u^

u

dx^

dx

= = = = − = − = − DERIVADA DE FUNCS HIPERBÓLICAS

1

2

1

2 1

2 1

2

1

1

senh^

si cosh

cosh^

,^

si cosh

tgh^

,^

ctgh^

,^

si sech

0,^

sech

d^

du u dx^

dxu

u

d^

du u^

u

dx^

dx^

u

u

d^

du u^

u

dx^

dxu

d^

du u^

u

dx^

dxu

u^

u

d^

du

u dx^

dx u^

u − − − −

+^

±^

=^

⋅^

>^ 

−^

−^

=^

⋅^

⋅^

−^

>^

=^

DERIVADA DE FUNCS HIP INV

1

1

2

si sech

0,^

csch^

,^

u^

u

d^

du

u^

u

dx^

dx u^

u

+^

<^

= −^

⋅^

(^

(^

)^

(^

(^

(^

ln

ln^

ln 1

ln^

ln^

ln^

log^

ln^

ln^

ln^

ln

log^

2 log^

ln^

2 ln^

u^

u u u

u u u^

u a a^

a

e du

e

aa a du^

aa a ua du

ua

a

ue du

e^

u udu^

u^ u

u^

u^

u

u

udu^

u^ u

u^

u

a^

a

u u^

udu^

u u u^ udu

u

=^

^ ≠ ^

=^

⋅^ −^

^

=^

=^

−^ =

=^

−^ =

=^

⋅^

=^

INTEGRALES DE FUNCS LOG & EXP ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

(^ )^

(^ )

{^

}^

(^ )^

(^ )

(^ )^

(^ )

(^ )^

(^ )^

(^ )

(^ )^

(^ )

(^ ) (

)^

(^ )^

(^

(^ )^

[^ ]

(^ )^

(^ )

(^ )^

0 (^ )

,^ ,^

b^

b^

b

a^

a^

a

b^

b

a^

a

b^

c^

b

a^

a^

c

b^

a

a^

b a a

b a b^

b a^

a f^ x^

g^ x^

dx^

f^ x dx

g

x dx

cf^ x dx

c^

f^ x dx

c

f^ x dx

f^ x dx

f^ x dx

f^ x dx

f^ x dx

f^ x dxm b^ a

f^ x dx

M^

b^ a

m^

f^ x^

M^

x^ a b

m M

f^ x dx

g^ x dx f^ x^

g^ x^

x^ a ±^

=^

=^ ⋅^

=^

⋅^ −

≤^

≤^

⋅^ −

⇔^

≤^

≤^

⇔^

≤^

∀^ ∈

∫^

∫^

∫^

∫^

∫^

∫^

∫^

INTEGRALES DEFINIDAS,PROPIEDADES

\

\

[^ ]

(^ )^

(^ )^

si

b^

b a^

a

b

f^ x dx

f^ x^

dx^

a^ b

≤^

∫^

(^ )^

(^ )

(^

) (^

1

Integración por partes^1 1 nn ln adx^

ax af^ x dx

a^

f^ x dx u^ v

w^

dx^

udx^

vdx^

wdx

udv^

uv^

vduu u du

n n du^

u u

=

±^ ±

±^

=^

±^

±^

=^ − =^

∫ ∫^

∫^

∫^

∫^

INTEGRALES ∫ ∫

"^

sen^22

cos cos^

sen sec^

tg csc^

ctg sec^

tg^

sec csc^

ctg^

csc udu^

u udu^

u udu^

u udu^

u u^ udu

u u^

udu^

u = −= = = −=

INTEGRALES DE FUNCS TRIGO ∫ ∫ ∫ ∫ ∫ ∫^ tg^

ln cos

ln sec

ctg^

ln sen sec^

ln sec

tg

csc^

ln csc

ctg udu^

u^

u

udu^

u udu^

u^

u

udu^

u^

u

= −^

= =^

=^

(^

(^2222)

sen^

sen 2 2 41 cos^

sen 2 2 4 tg^

tg ctg^

u ctg udu^

u u udu^

u

udu^

u^ u udu^

u^ u =^ − =^ + = − = −^

∫ ∫ ∫ ∫^ sen

sen^

cos

cos^

cos^

sen

u^

udu^

u^ u

u

u^

udu^

u^ u

u =^

=^

∫ ∫ INTEGRALES DE FUNCS

(^

(^

2 2 2 2 2 2

sen^

sen^

cos^

cos^

tg^

tg^

ln^1

ctg^

ctg^

ln^1

sec^

sec^

ln^

sec^

cosh

csc^

csc^

ln^

udu^

u^

u^

u

udu^

u^

u^

u

udu^

u^

u^

u

udu^

u^

u^

u

udu^

u^

u^

u^

u

u^

u^

u

udu^

u^

u^

u^

u

∠^

=^ ∠

+^

∠^

=^ ∠

−^

∠^

=^ ∠

∠^

=^ ∠

+^

∠^

=^ ∠

−^

+^

=^ ∠

∠^

=^ ∠

+^

+^

TRIGO INV

csc^

cosh u^

u^

u

=^ ∠

INTEGRALES DE FUNCS HIP

senh^22

cosh cosh^

senh sech^

tgh csch^

ctgh sech^

tgh^

sech

csch^

ctgh^

csch

udu^

u udu^

u udu^

u udu^

u u^

udu^

u

u^

udu^

u

= = = = −