

Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
ejercicios para calculo, en el cual se logra entender los pasos para resolverlos en caso de que no entiendan la materia inplantida y con los resultados incluidos
Typology: Exercises
1 / 2
This page cannot be seen from the preview
Don't miss anything!
1
1 1 1
si^
si^
y 0 y^
n^ ó ó
n k^
k k^
kn nk
k k^
k
a^
a a^
a^ a a^
a a^ a
a^ a a^
a^
a
ab^
a b^
a^
a
a^ b
a^
b^
a^
a
=^
= = = ≥ = −^
p^ q p
p^ q q qp^
pq p p^
p p^
p p q p^ q^
p a^ a
a a^
a a a^
a a b^
a^ b a^
a b^
b a^
EXPONENTES loglog^10
log^
log
log^
log^
log
log^
loglog^
ln
log^
log^
ln
log^
log^
y log
ln x a a^
a^
a
a^
a^
a
ra
a b a
b
e
N^ x
a
r^
a^
a
N^
2 2
2
2
2
2
2
2
2 2 3
3
2
2 3
3
3
2
2 3
2
2 2
a^ c
d^
ac^
ad
a^ b^
a^ b
a
b
a^ b^
a^ b
a
b^
a^
ab^
b
a^ b^
a^ b
a
b^
a^
ab^ b
x^ b^
x^ d^
x^
b^ d
x^
bd
ax^ b
cx
d^
acx^
ad^
bc x
bd
a^ b^
c^ d
ac
ad
bc
bd
a^ b^
a^
a b^
ab^
b
a^ b^
a^
a b^
ab^
b
a^ b^
c^
a^
b^ c
⋅^ +
ab^
ac^
bc
+^
2
3 3
3
2
2 3
4 4
4 3
2 2
3 4
5
1 n^ n^ k^1
k^
n^ n
k a^ b^
a^
ab^
b^
a^ b
a^ b^
a^
a b^
ab^
b^
a^ b
a^ b^
a^
a b^
a b^
ab^
b^
a^
b
a^ b^
a^ b
a^
b^
n
−^ − = −^ ⋅
5
2
2
3 3
3 2
2
3
4 4
4 3
2 2
3 4
5 5
5 4
3 2
2 3
4 5
6
6
a^ b
a^
ab^
b^
a^
b
a^ b
a^
a b^
ab^
b^
a^ b
a^ b
a^
a b^
a b^
ab^
b^
a^ b
a^ b
a^
a b^
a b^
a b^
ab^
b^
a^ b
HIP θ
Gráfica 4. Las funciones trigonométricas inversasarcctg
x^ , arcsec
x^ , arccsc
x^ :^
sen^
sen^
2sen
cos 2
sen^
sen^
2sen
cos 2
cos^
cos^
2 cos^
cos 2
cos^
cos^
2sen
sen 2
α^
β^
α^ β
α^ β
α^
β^
α^ β
α^ β
α^
β^
α^ β
α^ β
α^
β^
α^ β
α^ β
-^
0
5
(^43210) -1 -
arc ctg xarc sec xarc csc x
1
1
1
1
1 (^1 )
impar
par
n^
k^ n
k^ k^
n^
n
kn^
k^ n
k^ k^
n^
n
k a^ b
a^ b
a^
b^
n
a^ b
a^ b
a^
b^
n
+^ −
+^ −
−
^ =
1 2
1
1 1
1 1
1
1 1
0
1
n n^
kk
n kn^
n k^
k
k^
k n^
n^
n
k^ k
k^
k
k^
k^
k
n k
k^
n
a^ a k
a^
a
c^ nc ca^
c^ a a^ b
a^
b
a^
a^
= a a
= =^
= =^
=^
= − +^ =
n
θ^
sen^
cos^
tg^
ctg^
sec^
csc
D^
sen tg^
tg^
cos^
α^ β cos
α^
β^
α^ ± β
±^
sen^
cos^
sen^
sen
21
sen^
sen^
cos^
cos
21
cos^
cos^
cos^
cos
2 α^
β^
α^ β
α^ β
α^
β^
α^ β
α^ β
α^
β^
α^ β
α^ β
2
2 2
2 2
2 sen^
cos^
1 ctg
csc tg^ θ^1 sec
θ θ^
θ θ^
θ +^
sen^
cos^
tg^
ctg^
tg^
sec^
cos^
csc^
sen^
y^
x^ y y^
x^ y y^
x^ y y^
x^
yx
y^
x^
yx
y^
x^
π^ π π π^ π yx
π π π^ π ^
tg^
tg
tg^
tg^
ctg^ α^ β ctg α^
β^
α^
β
⋅^
sen cos^
cos tg^
tg θ^
θ θ^
θ θ^
θ −^ = −−^ = − = −
senh^
cosh^
(^2) senh tgh^
cosh^1 ctgh^
tgh^1
sech^
cosh^1
csch^
x^ senh
x x^
x x^
x x^
x x^
x x^
x x x x x
e^ ex e^ ex x
e^
e
x^
x^ e
ee e x^
x^ e
e x^
x^ e
e x^
x^ e − − − − − −^ e
− − − =
sen^
sen
cos^
cos
tg^
tg sen^
sen
cos^
cos
tg^
tg sen^
1 sen
cos^
1 cos
tg^
tg
n n
θ^ π^ n n n
θ θ^
π^
θ
θ^
π^
θ θ^ π
θ
θ^ π
θ
θ^ π
θ θ^
π^
θ
θ^
π^
θ
θ^
π^
θ +^
1
1 1
2 1 2
3
2
1 3
4
3 2
1 4
5
4
3
1
2
1
k!
n
n^ k kn kn kn kn k n k
n
a^ k
d
a^ n
d n a^
l r^
a^ rl
ar^
a^
r^
r
k^
n^
n k^
n^
n^
n
k^
n^
n^ n k^
n^
n^
n^ n n^
n
n^
k n^
n = k
− = = = = =
!^ ,!! n^0 n^
n^ k^ k k
k^ n n^ k^
k n x^ y
Gráfica 1. Las funciones trigonométricas:
cos^ x
, tg
x^ :
sen^ x
-8^ -
-^ -^
0 2
4
6 8
(^2) 1.5 (^1) 0.5 (^0) -0.5 -1 -1.5 -
sen xcos xtg x
senh :cosh :
tgh :^
ctgh :
sech :
csch :
sen^
cos^
tg^
sen^
cos^
tg^
n
n
n^ π n π n π n n n = =^ − = +π π π ^
Gráfica 2. Las funciones trigonométricas
sec^ x^
, ctg
x^ :
csc^ x
Gráfica 5. Las funciones hiperbólicas
senh^
x
cosh^
x^ tgh
x
1 2
1 2
1 2 1 2
k
n^
n n^ n
k^
k k n
x^ x
x^
x^ x
x
n^ n^
n
-8^ -
-^ -^
0 2
4
6 8
2.5^2 1.5^1 0.5^0 -0.5^ -1 -1.5^ -2 -2.
csc xsec xctg x
-^
0
5
(^543210) -1 -2 -3 -
senh xcosh xtgh x
sen^
cos^
cos^
sen^
π^2 θ^
θ π θ^
^ θ
CONSTANTES^ 3.14159265359 π =2.71828182846 e =
2
2 2 sen^222
sen^
cos^
cos^
sen
cos^
cos^
cos^
sen^
sen
tg^
tg
tg^
1 tg
tg
sen 2
2sen
cos cos 2
cos
sen 2 tg tg 2^
1 tg^1 sen^
1 cos 2 21 cos^
1 cos 2 21 cos 2 tg^ α^ β^1 cos 2
α^
β^
α^
β
α^ β
α^
β^
α^
β
α^
β
α^ β
α^ β θ^
θ^
θ
θ^
θ^
θ θ θ^
θ θ^
θ
θ^
θ θ
θ^
θ ±^
sen^
csc^
sen^1
cos^
sec^
cos
sen^
tg^
ctg
cos^
tg
θ^
θ^
θ
θ^
θ^
θ
θ θ^
θ
θ^
θ
Gráfica 3. Las funciones trigonométricas inversasarcsen
x^ , arccos
x^ , arctg
x^ :
-^ -^ -^
0
1
2
3
(^43210) -1 -
arc sen xarc cos xarc tg x
radianes=180π
D
1
2
1
2
1 1
2
1
2
1 senh^
ln^
cosh^
ln^
tgh^
ln^
ctgh^
ln^
sech^
ln^
csch^
ln^
x^
x^
x^
x
x^
x^
x^
x x x^
x x x x^
x x
x
x^
x x x x^
x
x^
x
−= − − − − −
0
0
0
0
0 0
0 2
2
3 3
5
7
(^2 ) ''
'^
: Taylor ! '' 0 0
: Maclaurin !
1
sen^
cos
n
n n^
n n
x
n f^ x^ n
x^ x
f^ x^
f^ x^
f^ x^
x^ x f^ x
x^
x nf^
x
f^ x^
f^
f^
x f^
x n x^
x^
x
e^
x^
n
x^
x^
x^
x
x^ x
n
x
− −
2
4
6
2 2 1
2
3
4
1
3
5
7
(^2 )
ln 1^
tg^
nn nn nn 2 1
x^
x^
x^
xn
x^
x^
x^
x
x^
x^
n
x^
x^
x^
x
x^ x
−− − −− n
sen^2 22
cos
sen
cos^
sen
cos
au
au
au
au
e^ a
bu
b^
bu
e^
bu du
a^ b e^ a
bu
b^
bu
e^
bu du
a^
− b
=^
2 2
2
2
2 2 2
2
2
2
2 2
2
2
2
2
2
2
2
2
2
2
2
2
sen cos ln 1 ln 1 cos 1 sec
sen
2
2 ln 2
du^
ua
a^
u
ua
du^
u^
u^ a
u^
a du
u a u^ a^
u^
a^
a^
u
du^
a a^
u
u^ u^
a
u a^
a u^
a^
u
a^ u du
a^ u
a
u^
a
u^ a du
u^ a
u^
u^ a
2
2
2
2
2
2
2
2
2 2
1 tg 1 ctg^1 ln 21 ln 2 du^
u a^
a
u^
a
u a^
a
du^
u^ a
u
a a^ u
a
u^
adu
a^ u
u
a a^ a
u
a^
=^ u
1
tgh^
ln cosh ctgh^
ln senh sech^
tg senh csch^
ctgh^
cosh 1 ln tgh
udu^
u udu^
u udu^
u
udu^
u − u = = = ∠= − =
2 2
2
cosh^2
senh^
1 tgh
sech ctgh^
1 csch senh^
senh cosh^
cosh tgh^
tgh x^
x x^
x x^
x x^
x x^
x x^
x −^
2
2 2
senh^
senh^
cosh^
cosh^
senh
cosh^
cosh^
cosh^
senh^
senh
tgh^
tgh
tgh^
1 tgh
tgh
senh 2
2senh
cosh
cosh 2
cosh
senh 2 tgh tgh 2^
x^ y^^1 tgh
x^
y^
x^
y
x^ y
x^
y^
x^
y
x^
y
x^ y
x^
y
x^
x^
x
x^
x^
x x x^
x ±^
(^222)
senh^
cosh 2
cosh^
cosh 2
(^2) cosh 2
tgh^
cosh 2
x^
x x^
x x
x^
x =^
senh 2 tgh^
cosh 2
x 1 x^
x =^
2
2
2
discriminante
ax^
bx^ c
b^
b^
ac
x^
a
b^
ac +^ +
lim 1^00001
lim 1senlim^
1 coslim
lim^
lim^
ln
x x
x x x x
x x x
x^
e e xx xx xe xx x
0
0
lim^1
lim
x^
x^
x
n^
n
f^ x^
x^ f
x
df^
y
D f^
x^
dx^
x^
x
d^ cdxd^ cx
c dxd^ cx
ncx dxd^
du^
dv^
dw
u^ v
w dx^
dx^
dx^
dx
d^
du cu^
c dx^
∆ → dx
∆ →
−
2 1 n^
n d^
dv^
du
uv^
u^
v
dx^
dx^
dx
d^
dw^
dv^
du
uvw^
uv^
uw^
vw
dx^
dx^
dx^
dx
v du dx
u dv dx
d^ udx^ v
v
d^
du u^
nu dx^
− dx =^
2 1
2
(Regla de la Cadena) 1
donde
dF^
dF^ du dx^
du^
dx dudx^
dx dudF du dFdx^
dx du
x^ f
t
f^ t dy dt dydx^
dx dt
f^
t^
y^ f
t
1
ln
log log
log log^
ln a ln a u u u u v
v^
v
du dx d^
du
u dx^
u^
u^ dx
d^
e^ du u dx^
u^
dxe
d^
du u^
a^
a
dx^
u^
dx
d^
du e^
e dx^
dx d^
du a^
a^
a
dx^
dx
d^
du^
dv
u^
vu^
u u
dx^
dx^
dx
2 sen^
cos cos^
sen tg^
sec ctg^
csc sec^
sec^
tg csc^
csc^
ctg
vers^
sen d^
du u^
u
dx^
dx
d^
du u^
u
dx^
dx
d^
du u^
u
dx^
dx
d^
du u^
u
dx^
dx
d^
du u^
u^ u
dx^
dx
d^
du
u^
u^
u
dx^
dx
d^
du u^
u
dx^
dx = = − = = − = = − =
sen^
cos
tg^
ctg^
si^
sec^
si^
si^
csc^
si^
vers^
d^
du
u dx^
dxu
d^
du
u dx^
dxu
d^
du u dx^
dxu
d^
du u dx^
dxu
u
d^
du
u^
u
dx^
dx u^ u
u
d^
du
u^
u
dx^
dx u^ u
d^
u dx^
u^ u
∠^
du ⋅ 2 dx
2 2 senh^
cosh cosh^
senh tgh^
sech ctgh^
csch sech^
sech^
tgh
csch^
csch^
ctgh
d^
du u^
u
dx^
dx
d^
du u^
u
dx^
dx
d^
du u^
u
dx^
dx
d^
du u^
u
dx^
dx
d^
du
u^
u^
u
dx^
dx
d^
du
u^
u^
u
dx^
dx
= = = = − = − = − DERIVADA DE FUNCS HIPERBÓLICAS
1
2
1
2 1
2 1
2
1
1
senh^
si cosh
cosh^
si cosh
tgh^
ctgh^
si sech
sech
d^
du u dx^
dxu
u
d^
du u^
u
dx^
dx^
u
u
d^
du u^
u
dx^
dxu
d^
du u^
u
dx^
dxu
u^
u
d^
du
u dx^
dx u^
u − − − −
−
1
1
2
si sech
csch^
u^
u
d^
du
u^
u
dx^
dx u^
u
−
−
ln
ln^
ln 1
ln^
ln^
ln^
log^
ln^
ln^
ln^
ln
log^
2 log^
ln^
2 ln^
u^
u u u
u u u^
u a a^
a
e du
e
aa a du^
aa a ua du
ua
a
ue du
e^
u udu^
u^ u
u^
u^
u
u
udu^
u^ u
u^
u
a^
a
u u^
udu^
u u u^ udu
b^
b^
b
a^
a^
a
b^
b
a^
a
b^
c^
b
a^
a^
c
b^
a
a^
b a a
b a b^
b a^
a f^ x^
g^ x^
dx^
f^ x dx
g
x dx
cf^ x dx
c^
f^ x dx
c
f^ x dx
f^ x dx
f^ x dx
f^ x dx
f^ x dx
f^ x dxm b^ a
f^ x dx
b^ a
m^
f^ x^
x^ a b
m M
f^ x dx
g^ x dx f^ x^
g^ x^
x^ a ±^
si
b^
b a^
a
b
f^ x dx
f^ x^
dx^
a^ b
≤^
1
Integración por partes^1 1 nn ln adx^
ax af^ x dx
a^
f^ x dx u^ v
w^
dx^
udx^
vdx^
wdx
udv^
uv^
vduu u du
n n du^
u u
=
sen^22
cos cos^
sen sec^
tg csc^
ctg sec^
tg^
sec csc^
ctg^
csc udu^
u udu^
u udu^
u udu^
u u^ udu
u u^
udu^
u = −= = = −=
ln cos
ln sec
ctg^
ln sen sec^
ln sec
tg
csc^
ln csc
ctg udu^
u^
u
udu^
u udu^
u^
u
udu^
u^
u
= −^
(^2222)
sen^
sen 2 2 41 cos^
sen 2 2 4 tg^
tg ctg^
u ctg udu^
u u udu^
u
udu^
u^ u udu^
u^ u =^ − =^ + = − = −^
sen^
cos
cos^
cos^
sen
u^
udu^
u^ u
u
u^
udu^
u^ u
u =^
2 2 2 2 2 2
sen^
sen^
cos^
cos^
tg^
tg^
ln^1
ctg^
ctg^
ln^1
sec^
sec^
ln^
sec^
cosh
csc^
csc^
ln^
udu^
u^
u^
u
udu^
u^
u^
u
udu^
u^
u^
u
udu^
u^
u^
u
udu^
u^
u^
u^
u
u^
u^
u
udu^
u^
u^
u^
u
csc^
cosh u^
u^
u
senh^22
cosh cosh^
senh sech^
tgh csch^
ctgh sech^
tgh^
sech
csch^
ctgh^
csch
udu^
u udu^
u udu^
u udu^
u u^
udu^
u
u^
udu^
u
= = = = −