Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Beta function and related applications, Lecture notes of Calculus

Definition of beta function and its usage in integral problems

Typology: Lecture notes

2023/2024

Uploaded on 04/09/2024

muhammed-aydogdu
muhammed-aydogdu 🇹🇷

3 documents

1 / 3

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Beta Fonksiyonu
Beta Fonksiyonu sa¼
daki ¸sekilde tan¬mlanabilir.
1) B(x; y) =
1
Z
0
tx1(1 t)y1dt
2) B(x; y) = 2
=2
Z
0
(sin )2x1(cos )2y1d
3) B(x; y) =
1
Z
0
ux1
(1 + u)x+ydu
4) B(x; y) = (x) (y)
(x+y)
5) B(x; 1x) = (x) (1 x) =
sin x
Örnek 1.
sa¼
daki integrallerin de¼
gerlerini hesaplay¬z.
a)
a
Z
0
x5paxdx b)
=6
Z
0q(sin 3)11 (cos 3)9d
Çözüm:
a) Bu integrali hesaplayabilmek için x=at dönü¸sümü yapal¬m. Buna göre,
a
Z
0
x5paxdx =a13=2
1
Z
0
t5(1 t)1
2dt
=a13=2B6;3
2
=a13=2 (6) 3
2
15
2
=a13=229
9009
bulunur.
1
pf3

Partial preview of the text

Download Beta function and related applications and more Lecture notes Calculus in PDF only on Docsity!

Beta Fonksiyonu

Beta Fonksiyonu a∏saºg¨daki ∏sekilde tan¨mlanabilir.

  1. B(x; y) =

Z^1

0

tx^1 (1 t)y^1 dt

  1. B(x; y) = 2

Z^ =^2

0

(sin )^2 x^1 (cos )^2 y^1 d

  1. B(x; y) =

Z^1

0

ux^1 (1 + u)x+y^

du

  1. B(x; y) = (x) (y) (x + y)

  2. B(x; 1 x) = (x) (1 x) =

sin x

÷rnek 1.

A∏saºg¨daki integrallerin deºgerlerini hesaplay¨n¨z.

a)

Z^ a

0

x^5

p a xdx b)

Z^ =^6

0

q (sin 3)^11 (cos 3)^9 d

«ˆz¸m:

a) Bu integrali hesaplayabilmek iÁin x = at dˆn¸∏s¸m¸ yapal¨m. Buna gˆre,

Z^ a

0

x^5

p a xdx = a^13 =^2

Z^1

0

t^5 (1 t)

(^12) dt

= a^13 =^2 B

= a^13 =^2

2

2

a^13 =^229 9009

bulunur.

b) 3  = t dˆn¸∏s¸m¸ yap¨l¨p, Beta fonksiyonunun 2) tan¨m¨kullan¨l¨rsa,

Z^ =^6

0

q (sin 3)^11 (cos 3)^9 d =

Z^ =^2

0

(sin t)

(^112) (cos t)

(^92) dt

B

elde edilir. 5) in kullan¨lmas¨yla

Z^ =^6

0

q (sin 3)^11 (cos 3)^9 d =

p 2 214

bulunur.

÷rnek 2.

n + (^12)

(2n)! p  22 n:n! (n = 0; 1 ; 2 :::) baºg¨nt¨s¨n¨n doºgruluºgunu gˆsterdikten sonra bu baºg¨nt¨-

dan yararlanarak a∏saºg¨daki e∏sitliklerin doºgruluºgunu gˆsteriniz.

a) B

n;

22 n: (n!)^2 n: (2n)! b) B

n +

(2n)! 22 n: (n!)^2

«ˆz¸m:

n +

n

n

n

n

n

n

n

n

(2n 1)(2n 3)::: 3 : 1 2 n

p 

= (2n)! p  22 n:n!

elde edilir.