

Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Definition of beta function and its usage in integral problems
Typology: Lecture notes
1 / 3
This page cannot be seen from the preview
Don't miss anything!
Beta Fonksiyonu
Beta Fonksiyonu a∏saºg¨daki ∏sekilde tan¨mlanabilir.
0
tx ^1 (1 t)y ^1 dt
0
(sin )^2 x ^1 (cos )^2 y ^1 d
0
ux ^1 (1 + u)x+y^
du
B(x; y) = (x) (y) (x + y)
B(x; 1 x) = (x) (1 x) =
sin x
÷rnek 1.
A∏saºg¨daki integrallerin deºgerlerini hesaplay¨n¨z.
a)
Z^ a
0
x^5
p a xdx b)
0
q (sin 3)^11 (cos 3)^9 d
«ˆz¸m:
a) Bu integrali hesaplayabilmek iÁin x = at dˆn¸∏s¸m¸ yapal¨m. Buna gˆre,
Z^ a
0
x^5
p a xdx = a^13 =^2
0
t^5 (1 t)
(^12) dt
= a^13 =^2 B
= a^13 =^2
2
2
a^13 =^229 9009
bulunur.
b) 3 = t dˆn¸∏s¸m¸ yap¨l¨p, Beta fonksiyonunun 2) tan¨m¨kullan¨l¨rsa,
Z^ =^6
0
q (sin 3)^11 (cos 3)^9 d =
0
(sin t)
(^112) (cos t)
(^92) dt
elde edilir. 5) in kullan¨lmas¨yla
Z^ =^6
0
q (sin 3)^11 (cos 3)^9 d =
p 2 214
bulunur.
÷rnek 2.
n + (^12)
(2n)! p 22 n:n! (n = 0; 1 ; 2 :::) baºg¨nt¨s¨n¨n doºgruluºgunu gˆsterdikten sonra bu baºg¨nt¨-
dan yararlanarak a∏saºg¨daki e∏sitliklerin doºgruluºgunu gˆsteriniz.
a) B
n;
22 n: (n!)^2 n: (2n)! b) B
n +
(2n)! 22 n: (n!)^2
«ˆz¸m:
n +
n
n
n
n
n
n
n
n
(2n 1)(2n 3)::: 3 : 1 2 n
p
= (2n)! p 22 n:n!
elde edilir.