









Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Now we get a chance to apply all of our newly acquired skills to real-life applica- tions, otherwise known as word problems. Let's look at some elevation ...
Typology: Study notes
1 / 17
This page cannot be seen from the preview
Don't miss anything!
Now we get a chance to apply all of our newly acquired skills to real-life applica- tions, otherwise known as word problems. Let’s look at some elevation and depres- sion problems. I first encountered these in a Boy Scout handbook many years ago. There was a picture of a tree, a boy, and several lines.
11
θ^5
LeSSon 6
Angles of Elevation and Depression
AnGLeS oF eLeVATion AnD D Sion
We can also use our trig abilities.
From the “boy” triangle: tan^ θ =^115 =.^4545 θ = 24.44º
When working these problems, the value of the trig ratio may be rounded and recorded, and further calculations made on the rounded value. You may also keep the value of the ratio in your calculator and continue without rounding the inter- mediate step. This may yield slightly different final answers. These differences are not significant for the purposes of this course. It is pretty obvious that an angle of elevation measures up and an angle of depression measures down. One of the keys to being a good problem solver is to draw a picture using all the data given. It turns a one-dimensional group of words into a two-dimensional picture.
We assume that the line where the angle begins is perfectly flat or horizontal.
( )( ) =
Answer the questions.
Express as a fraction.
Express as a decimal.
Answer the questions.
Express as a fraction.
Express as a decimal.
LESSon 6B
Solve for the lengths of the sides and the measures of the angles.
LESSon 6C
Results for #15 and 16 may vary slightly from the solutions, depending on when steps were rounded.
Solve for the lengths of the sides and the measures of the angles.
Answer the questions.
Express as a fraction.
Express as a decimal.
Here are some more applications of trig functions. In some of these you may need to find a missing side, and in others a missing angle.
Use the skills you have learned so far to answer the questions. Always begin by making a drawing and labeling the known information.
Some problems will require more of your algebra skills. There are some examples of these on the next page. The first one is done for you.
HonoRS 6H
First, make a drawing. There’s not enough information to find x using either the angle at B or the angle at C. However, we can make two equations using x and y. Equation 1 tan 40º = xy Equation 2 tan 30º = (^) y +x 100 Replace tan 40º with its ratio and solve for x in Equation 1. .8391 = xy or x = .8391y Replace tan 30º with its ratio in in Equation 2. .5774 = (^) y + x 100 Substitute value of x from Equation 1 in Equation 2. .5774 = .8391y + 100 y Solve for y. .5774(y + 100) = .8391y .5774 y + 57.74 = .8391y 57.74 = .2617y y = 220.6 (rounded) Solve for x, which is the height of the balloon. x = .8391y x = .8391 (220.6) = 185.1 m
TEST 6
Use for #9–10: A car traveled a distance of 100 feet up a ramp to a bridge. The angle of elevation of the ramp was 10°.
A. 17.4 ft B. 98.5 ft C. 10 ft D. 100 ft
A. 575 ft B. 98.5 ft C. 89.4 ft D. 17.4 ft
A. cos 45º B. cos 30º C. tan 60º D. tan 30º
A. 1. B. 35º C. 55º D..
A. 46.21º
B. 46.12º
C. 46.35º
D. 46.4º
A. tan α
B. cot α
C. sec α
D. csc α
is equal to:
A. csc α B. sec α C. sin α D. cos α
precALcULUS
LeSSon 6A - LeSSon 6A
Lesson 6ALesson 6A
cos º ' ,. tan º ' (^) ,
D ft M M
= ,, tan º ' ,. csc
( )(^ )
= =
M ≈ ft
4
θ ..
sec cot csc
θ θ
αα α α θ
sec cot sin. c
oos. tan. sin
θ θ α
cos. tan. ar
α α
ccsin.. º arcsin.. º tan
tan. º. sin. º sin
sin. º.
. º. º s
α
= (^ )
c c
ss º. º º º
( ) = − =
α
Lesson 6A
cos º ' ,. tan º ' (^) ,
D ft M M
= ,, tan º ' ,. csc
( )(^ )
= =
M ≈ ft
4
θ ..
sec cot csc
θ θ
αα α α θ
sec cot sin. c
oos. tan. sin
θ θ α
cos. tan. ar
α α
ccsin.. º arcsin.. º tan
tan. º. sin. º sin
sin. º.
Lesson 6A
cos º ' ,. tan º ' (^) ,
D ft M M
= ,, tan º ' ,. csc
( )(^ )
= =
M ≈ ft
4
θ ..
sec cot csc
θ θ
αα α α θ
sec cot sin. c
oos. tan. sin
θ θ α
cos. tan. ar
α α
ccsin.. º arcsin.. º tan
tan. º. sin. º sin
sin. º.
α α
ccsin.. º arcsin.. º tan
tan. º. sin. º sin
sin. º.
. º. º s
α
= (^ )
c c
ss º. º º º tan. º
( ) = − = = =
α
tan. º . sin. º sin. º
e e
e = = − =
sin. º. º. º. º
α
cos. º cos. º. º º
α '' " º ' "
. º
θ ≈
α α
ccsin.. º arcsin.. º tan
tan. º. sin. º sin
sin. º.
. º. º s
α
= (^ )
c c
ss º. º º º tan. º
( ) = − = = =
α
tan. º . sin. º sin. º
e e
e = = − =
sin. º. º. º. º
α
cos. º cos. º. º º
α '' " º ' "
. º
θ ≈
sinα =
cos. tan. ar
α α
ccsin.. º arcsin.. º tan
tan. º. sin. º sin
sin. º.
. º. º s
α
= (^ )
c c
ss º. º º º tan. º
( ) = − = = =
α
tan. º . sin. º sin. º
e e
e = = − =
sin. º. º. º. º
α
cos. º cos. º. º º
α '' " º ' "
. º
θ ≈
sinα =
cos. tan. ar
α α
ccsin.. º arcsin.. º tan
tan. º. sin. º sin
sin. º.
. º. º s
α
= (^ )
c c
ss º. º º º tan. º
( ) = − = = =
α
tan. º . sin. º sin. º
e e
e = = − =
sin. º. º. º. º
α
cos. º cos. º. º º
α '' " º ' "
. º
θ ≈
sinα =
cos. tan. ar
α α
ccsin.. º arcsin.. º tan
tan. º. sin. º sin
sin. º.
. º. º s
α
= (^ )
c c
ss º. º º º tan. º
( ) = − = = =
α
tan. º . sin. º sin. º
e e
e = = − =
sin. º. º. º. º
α
cos. º cos. º. º º
α '' " º ' "
. º
θ ≈