Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Aircraft Dynamics: Modeling, Simulation, and Aerospace Engineering, Summaries of Aerospace Engineering

AEROSPACE ENGINEERING INTRODUCE AEROELASTICITY

Typology: Summaries

2023/2024

Uploaded on 11/23/2023

dilara-simsek
dilara-simsek 🇹🇷

2 documents

1 / 33

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Aircraft Dynamics
Marcello R. Napolitano
AIRCRAFT
DYNAMICS
From Modeling to Simulation
A I R C R A F T D Y N A M I C S
From Modeling to Simulation
AIRCRAFT
DYNAMICS
From Modeling to Simulation
Napolitano
www.wiley.com/college/napolitano
ISBN 978-0-470-94341-0
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21

Partial preview of the text

Download Aircraft Dynamics: Modeling, Simulation, and Aerospace Engineering and more Summaries Aerospace Engineering in PDF only on Docsity!

Aircraft Dynamics

Marcello R. Napolitano

A I R C R A F T

D Y N A M I C S

From Modeling to Simulation

A I R C R A F T

D Y N A M I C S

From Modeling to Simulation

A I R C R A F T

D Y N A M I C S

From Modeling to Simulation

Napolitano

www.wiley.com/college/napolitano

ISBN 978-0-470-94341-

“Aircraft Dynamics:

From Modeling to Simulation”

- A textbook designed to take advantage of the extensive

computational resources commonly available to today‟s students.

The majority of the textbooks in this discipline were written before

the introduction of Matlab® and Simulink®.

- A textbook designed to help students to be able to extrapolate from

low level formulas, equations, and details to high level

comprehensive views of the main concepts.

- A textbook with emphasis on teaching students the fundamental

skills of „basic modeling‟ of aircraft aerodynamics and dynamics.

  • An „instructor friendly‟ textbook featuring: - An extensive variety of Student Sample Problems and Case Studies; - An extensive variety of Problems; - A number of sample Matlab ® codes; - Detailed CAD drawings and geometric data for 25 different aircraft

from different classes;

- Complete aerodynamic, geometric, and flight conditions for 10

different aircraft;

- Approx. 500 Power Point-based instructor notes with instructional

videos

Sample figure from Ch. 1 showing the sequential derivation of ALL the aircraft dynamic equations

'

' ' ' '

:

:

A A A T V V S

A A A T V V S

d dr CLME dV g dV F F dS dt dt d dr CAME r dV r g dV r F F dS dt dt

 

 

  

     

Aero Forces/Moments

Thrust Forces/Moments

Initial Conditions

X Y Z ^ ^ 

' ' rr Pr

:  

P A T

A A T V

d V
CLME m mg F F
dt
d dr
CAME r dV M M
dt dt

 ^ ^ 

, ,

d C C C dt t X Y Z X Y Z

          X Y Z

  ^ 

P P A T

A A T V

CLME m V V mg F F
CAME r r r dV M M

 ^ ^ ^ ^ ^ ^  ^ 

X Y Z ^ ^ 

  (^)  

  (^)  

  (^)  

   

2 2

X X

Y Y

Z Z

X A T

Y A T

Z A T

XX XZ XZ ZZ YY A T

YY XX ZZ XZ A T

ZZ XZ YY XX XZ A T

m U QW RV mg F F

m V UR PW mg F F

m W PV QU mg F F

P I R I PQ I RQ I I L L

Q I PR I I P R I M M

R I P I PQ I I QR I N N

    

    

    

     

     

     

CLME & CAME

1 sin tan cos tan 0 cos sin 0 sin sec cos sec

P Q R

           (^)   (^)   (^)       (^)     (^)   (^)         ^  ^ 

' ' '

c c s c c s s s s c s c s c c c s s s s c s s c s c s c c

X U Y V Z W

                      (^)   (^)                   (^)      (^)            ^  ^ 

sin cos sin cos cos

X Y Z

g g g g g g

        

Aircraft trajectory w/r X‟Y‟Z‟

V P VP const   const

     

  (^)  

  (^)  

  (^)  

   

1 1

1 1

1 1

1 1

1 1

1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 2 2 1 1 1 1

1 1 1 1

sin
cos sin
cos cos

X X

Y Y

Z Z

A T

A T

A T

XZ ZZ YY A T

XX ZZ XZ A T

YY XX XZ A T

m Q W R V mg F F
m U R P W mg F F
m PV Q U mg F F
PQ I R Q I I L L
PR I I P R I M M
PQ I I Q R I N N

CLME & CAME at steady state

Steady state conditions

k

Steady state conditions 1 - Rectilinear flight 2 - Level turn 3 - Symmetric pull-up

Small perturbation conditions

sin , cos 1
up wr pq p
x x x

  (^)  

   

  (^)  

1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

1

cos
sin sin cos cos
cos sin sin cos

X X

Y Y

Z Z

A T

A T

A T

XX XZ XZ ZZ YY A T

YY

m u Q w qW R v rV mg f f
m v U r uR Pw pW mg mg f f
m w Pv pV Q u U q mg mg f f
p I r I Pq Q p I R q Q r I I l l
qI P

1 1 1

1 1 1 1

XX ZZ^2 2 XZ A T

ZZ XZ YY XX XZ A T

r pR I I P p R r I m m
r I p I Pq pQ I I Q r R q I n n

Small perturbations CLME & CAME

..from steady state, wing-level, rectilinear flight conditions

  (^)  

  (^)  

  (^)  

     

1 1

1 1 1

1 1

1

1

cos

cos

sin

sin

cos

X X

Y Y

Z Z

A T

A T

A T

XX XZ A T YY A T ZZ XZ A T

m u qW mg f f

m v U r pW mg f f

m w U q mg f f

p I r I l l qI m m r I p I n n p q r

   

     

     

     

             

 U V W , , 
 P Q R , , 
 gX^ ,^ gY^ , gZ     ,^ , 
   ,^ , 

Sample figure from Ch. 3 showing the summary of the PITCHING modeling

1 1 1 1

2 2 2

A m (^) u m m m m (^) q m (^) E E m (^) iH H P P P

u c q c m q S c c c c c c c c i V V V   

  

 (^)           ^                        (^)       

1

cm  0 at steady-state trimmed conditions

1

W u

AC m L

x c c Mach

   

( ) (1 )( ) W WB^ H H

H m L CG AC L H AC CG

S d c c x x c x x S d   

  

    

( ) E H H

iH

H m L H AC CG E

m E

S c c x x S

c

 

 

   

( ) i (^) H H H

H m L H AC CG

S c c x x S

   

Polhamus formula (Chapter II)

“Downwash” effect (Chapter II)

  (^)  

 

(^2 2 )

(^2 )

1 tan

L

AR
c
AR Mach
k Mach

  ^    
 ^  

 ^ 

2

4.44 AR mr cos 0.25 1

Mach

d

K K K Mach

d

  ^ ^ 

m mH c c  

2

H H H^ H H

H m L AC CG L H AC CG

S d
c c x x c x x
S d

  

mq m (^) q (^) W mqH

c  c  c

3 2 /

/ 3 2 0 /

/

tan 3

6cos

tan

6cos

q (^) W qW

c

c m m Mach c

c

AR

AR B B

c c

AR

AR

 ^ ^  

 ^  

  ^   

2 2

B  1  Mach cos  c / 4

/ 4 0 0

cos

m (^) qW q L (^) WMach c Mach

c K c C

 (^)  

 

2

/ 4 3 2 / 4

/ 4

2 cos
1 tan 1
24 6 cos 8

AC W CG ACW CG

c

c

c

AR x x x x
C
AR
AR
AR
 ^  

2

q (^) H H H

H m L H AC CG

S

c c x x

S

    Leading Edge of wing MAC

Leading Edge of tail MAC

Wing+Body Aerodynamic Center

Tail Aerodynamic Center Aircraft CG

XAC WB

XAC H

X CG

Wing MAC

WB WB

AC AC

X X cCG CG X X c

H H

AC AC

X X c

H. Tail MAC

c

c H

Leading Edge of wing MAC

Leading Edge of tail MAC

Wing+Body Aerodynamic Center

Tail Aerodynamic Center Aircraft CG

XAC WB

XAC H

X CG

Wing MAC

WB WB

AC AC

X X cCG CG X X c

H H

AC AC

X X c

H. Tail MAC

c

c H

Sample figure from Ch. 4 showing the summary of the YAWING modeling

1 1 1

2 2 2

A n n n (^) p nr n (^) A A n (^) R R P P P

b p b r b n q S b c c c c c c V V V

   

   

 (^)           (^)                    (^)       

cn 0 

n n W n B n H n V

c c c c c

    

S B l

B (^) B n N R

S l

c K K

S b

nH

c  

nW

c  

 cos 1 sin 1 

V V (^) V

V^ V^ V n Y L V

d S^ X^ Z

c k c

 d S b

^     

n (^) A nA L 1 lA c K c c  (^)  

cos 1 sin 1

R (^) V

V R R n L V R R

S X Z

c c K

S b

 

   

n p n p (^) W n pV ccc

1 1 0

W

L

n p n p n p L W L (^) Mach W C

c c

c c

c

  ^ 

 cos 1 sin 1   cos 1 sin 1 

V (^) V

V V V V V n p Y

X Z Z X Z

c c

b b

n r n r W nrV

ccc

1 0 1 0

2 2

r r W

n n nr L D L D

c c

c c c

c c

 ^ ^   ^ 

 

2 1 1 2

cos sin 2 V (^) V

V V nr Y

X Z c c b

    

Sample figure from Ch. 7 showing the solution of the linearized LONGITUDINAL equations

   

  (^)  

 

1 1

1 1

cos

sin

X X

Z Z

A T

A T

YY A T

m u qW mg f f

m w U q mg f f

qI m m q

     

     

  

     

   

1 1 1 1 1

1 1 1 1 1 1

(^1 ) 1 1

1 1

1 1

1

cos 2 2

sin 2 2 2

2 2

u X u X E

u q (^) E

u T (^) u T

D D T T D L D E P P

P L L L D L L L E P P P

YY YY m m m m m P P

mu mg q S c c u^ c c u c c c V V

u c qc m w V q mg q S c c c c c c c V V V

u u I I q q S c c c c c c c V V

 

  

  

   

      (^)                            

      (^)    (^2 1 ) mT m m (^) q m (^) EE P P

c qc c c c ^  V V

  

          X Y Z , ,   XS , YS , ZS

U 1 (^) (^) SV (^) P (^) 1 , W (^1) S  0

w q

 

 

1 1

, P , P

q q w V w V

   

 

     

     

1 1 1 1 1

1 1 1 1 1 1 1

(^1 ) 1 1

1 1

1 1

1

cos 2 2

sin 2 2 2

2 2

u X (^) u X E

u q (^) E

u T (^) u T T

D D T T D L D E P P

P P L L L D L L L E P P P

YY m m m m m m P P

q S u u u g c c c c c c c m V V

q S u c qc V V q g c c c c c c c m V V V

u u I q S c c c c c c c V V

 

  

 

  

    

 

                                

       (^2 1 ) m m (^) q m (^) EE P P

c qc c c cV V

 

       q 1   

c S ,

 m I , YY 
 aero coef .

Longitudinal

Dimensional

Stability

Derivatives

1 1

1

1

cos
sin

u E

E

u E

u T E

P u q P E

u T T q E

u g X X u X X
V g Z u Z Z Z V Z
M M u M M  M M M

 

  

  

 ^ 

       

      

1 1

1

1

( ) ( ) cos ( ) ( )

( ) ( ) sin ( ) ( )

( ) ( ) ( ) ( )

u E

E

u E

u T E

u P q P E

u T T q E

s X X u s X s g s X s

Z u s s V Z Z s s Z V g s Z s

M M u s M s M M (^)  s s s M s M s

 

  

  

  

  

  

     

         

       

tdomainsdomain

Laplace Transformation

  

       

1 1

1

1

cos ( )
sin

u E

E

E u

u T (^) E

u P q P E u T T q E

u s
s X X X g s
X
s
Z s V Z Z s Z V g Z
s
M
M M M s M M s s M s
s

 

  

  

    ^ 
    ^ 
 ^ ^ ^ ^ ^ ^ ^     

1

1

1

U E

E

E

u s Num s
s D s
s Num s
s D s
s Num s
s D s

Transfer
Functions

3 2

3 2

2

Num u s A su B su C su Du
Num s A s B s C s D
Num s A s B s C

    

   

4 3 2 D s 1 ( )  A s 1  B s 1  C s 1  D s 1  E 1

Routh-Hurwitz

Stability Analysis   

4 3 2 1 1 1 1 1 1 2 2 2 2

2 SP nSP nSP 2 PH nPH nPH
D A s B s C s D s E

s   ss   s

1 1 1 1 1 1

u E E E

E E E

E E E

u s Num^ s u s
u s s u t L u s
s D s s
s Num s s
s s t L s
s D s s
s Num^ s s
s s t L s
s D s s

Short-Period
Approximation

u t ( )  0

 ^ 

      

1 1

1

1

( ) cos (^) ( ) ( ) sin ( ) ( ) ( )

u E E

u E

u T (^) E

u P q P E u T T q E

u s s X X X g (^) s X s Z s V Z Z s Z V g Z s M M M s M M s s M s M s

       

    

   (^)             ^      ^   ^ ^ ^ ^ ^ ^ ^             (^)                

 ^ 

      

1 1

1

1

( ) cos (^) ( ) ( ) sin ( ) ( ) ( )

u E E

u E

u T (^) E

u P q P E u T T q E

u s s X X X g (^) s X s Z s V Z Z s Z V g Z s M M M s M M s s M s M s

       

    

   (^)             ^      ^   ^ ^ ^ ^ ^ ^ ^             (^)                

1 1

E

E

P P (^) E

q E

s
sV Z V s s Z
M s M s s M s M
s

 

  

   

 ^   ^   
 ^ ^ ^     

1

0, 0 sin 0, 0

q T

Z Z M

 

   

1

q n SP P

Z M M V

  (^) 

         

1

1

2

q P SP q P

Z M M V

Z M M V

 

 

                 

1 1

2 q 2 2 2 q SP n SP n SP P P

Z Z M s M M s M s s V V

^   ^ ^ ^ 

                      

Short-Period Char. Equation

Sample figure from Ch. 7 showing the concept of SENSITIVITY ANALYSIS

Flight Conditions

Alt .,^^ Mach ,^^ ^ ,^ q , 1 

Aircraft Geometry

, , , ,

, , , ,.. H

H H

H V AC

c c b b

S S S x

     

Aircraft Mass and

Inertial Properties

m I ,^^ XX ,^ IYY^ ,^ I^ ZZ , IXZ

Dimensionless

Stability and

Control Derivatives

0

0

0

, ,..,

, ,..,

, ,..,

, ,.., ,

, ,.., ,

, ,.., ,

E

E

E

p A R

p A R

p A R

D D D

L L L

m m m

l l l l

Y Y Y Y

n n n n

c c c

c c c

c c c

c c c c

c c c c

c c c c

 

 

 

  

  

  

                     

Dimensional Stability and Control Derivatives

(Tables 7.1 & 7.3)

, ,.., , , ,.., , , ,..,

, ,.., , , , ,.., , , , ,.., ,

E E E

A R A R A R

u u u

p p p

X X X Z Z Z M M M

L L L L Y Y Y Y N N N N

     

        

       

Longitudinal and

Lateral Directional

Characteristic

Equations

D s 1 ( ),^^ D 2^ ( ) s

Sample figure from Ch. 7 showing the key geometric parameters for SENSITIVITY ANALYSIS

Leading Edge
of wing MAC
Leading Edge
of tail MAC

  

Wing+Body
Aerodynamic
Center
Tail
Aerodynamic
Center

Aircraft CG

ACWB X

ACH

X

XCG

Wing MAC

CG CG

X
X
c

H H

AC AC

X
X
c
Tail MAC

c

cH

 (^) H

H

AC CG

S
S
x  x
CRITICAL PARAMETERS

S X

VS

X

S Z

S Y

VS

Z

V

S

b

Vertical Arm of

Vertical Tail

Horizontal Arm of

Vertical Tail

CRITICAL PARAMETERS

V

S

S

SV
VS VS

Z X

b b

Aircraft CG

Sample figure from Ch. 9 showing the general architecture of a simulation code

Beaver dynamics and output equations

16 rb/2V

15 qc/V

14 pb/2V

13 H dot

12 H

11 ye

10 xe

9 phi

8 theta

7 psi

6 r

5 q

4 p

3 beta

2 alpha

1 V

time To Workspace In To Workspace Out To Workspace

Mux Double-click for info!

Mux click 2x for info!

Mux

Mux

Mux

Demux

Demux

Demux

Clock

FDC Toolbox BEAVER, level 1 M.O. Rauw, October 1997

12 wwdot

11 vwdot

10 uwdot

9 ww

8 vw

7 uw

6 pz

5 n

4 deltaf

3 deltar

2 deltaa

1 deltae

xdot

y dl

x

uwind

uprop

uaero

Deflections of Control Surfaces

Throttle Settings

Atmospheric Turbulence (optional)

Motion Variables

Aircraft Equations of Motion

Pilot Inputs and

External Disturbance Aircraft Outputs

FDC Toolbox M.O. Rauw 1997

xdot x

yhlp

Additional outputs

Aircraft equations of motion (Beaver)

Wind forces

Gravity forces

Engine group (Beaver)

Aerodynamics group (Beaver)

(co)sines of alpha, beta, psi, theta, phi

Add + sort forces and moments

Airdata group

18 yad

17 yad

16 yad

15 yatm

14 Fwind

13 Fgrav

12 FMprop

11 FMaero

10 Cprop

9 Caero

8 yacc

7 ypow

6 yfp

5 ydl

4 yuvw

3 ybvel

2 xdot

1 x

hlpfcn

Gravity

Fwind

FMsort

BEAVER, level 2 (main level) M.O. Rauw

-K-

3 -K- uwind

2 uprop

1 uaero

Modeling of the Aerodynamic Forces and Moments

Modeling of the Propulsive Forces and Moments

Modeling of the Gravity Forces

Modeling of the Atmospheric Turbulence Forces

AIRCRAFT
EQUATIONS
OF MOTION

FDC Toolbox M.O. Rauw 1997

xdot x

yhlp

Additional outputs

Aircraft equations of motion (Beaver)

Wind forces

Gravity forces

Engine group (Beaver)

Aerodynamics group (Beaver)

(co)sines of alpha, beta, psi, theta, phi

Add + sort forces and moments

Airdata group

18 yad

17 yad

16 yad

15 yatm

14 Fwind

13 Fgrav

12 FMprop

11 FMaero

10 Cprop

9 Caero

8 yacc

7 ypow

6 yfp

5 ydl

4 yuvw

3 ybvel

2 xdot

1 x

hlpfcn

Gravity

Fwind

FMsort

BEAVER, level 2 (main level) M.O. Rauw

-K-

3 -K- uwind

2 uprop

1 uaero

Modeling of the Aerodynamic Forces and Moments

Modeling of the Propulsive Forces and Moments

Modeling of the Gravity Forces

Modeling of the Atmospheric Turbulence Forces

AIRCRAFT
EQUATIONS
OF MOTION

Sample drawing and tables from Appendix C showing aircraft data for aerodynamic modeling

“Aircraft Dynamics:
Chapter IV^ From Modeling to Simulation”

V

V

LELE

 

V

V

LELE

 

V

Leading edge wing line
(right wing wrt. pilot)
Perpendicular to
leading edge wing line

nR

V

V

V

V

Parallel to leading
edge wing line

nL

V

Parallel to leading
edge wing line
Perpendicular to
leading edge wing line
LEFT WING wrt. pilot RIGHT WING wrt. pilot

V

Leading edge wing line
(right wing wrt. pilot)
Perpendicular to
leading edge wing line

nR

V

V

V

V

Parallel to leading
edge wing line

nL

V

Parallel to leading
edge wing line
Perpendicular to
leading edge wing line
LEFT WING wrt. pilot RIGHT WING wrt. pilot

(cont.) l

c

Conceptual Modeling of

“Aircraft Dynamics:
Chapter IV^ From Modeling to Simulation”

 

 

cos

cos

nR

nL

LE

LE

V V

V V

 

 

  

  

nR nL

V V  

R L

LL

S

X

V

LR

Negative rolling moment

3

0 WB l c

Wing body dihedral effect

NOTE: „R‟ indicates „RIGHT‟ wrt pilot

LL

LRLL

S

X

V

LR

Negative rolling moment

3

0 WB l c

Wing body dihedral effect

NOTE: „R‟ indicates „RIGHT‟ wrt pilot

LL

LRLL

0 WB l III

c

(cont.) l

c

Conceptual Modeling of

“Aircraft Dynamics:
Chapter IV^ From Modeling to Simulation”

n

c

Conceptual Modeling of (cont.)

..Starting from:

n WB

c

XS

YS

 

VV

VV

Vfrom right of the pilot

XS

YS

 

VV

VV

V ^ from right of the pilot

XS

YS

V

V

  0 Vfrom right of the pilot

Resultant of the
Lateral Side Force
in front of CG
Resultant of the
Lateral Side Force
behind CG

Moment Arm in front of CG

Moment Arm behind CG

Negative
Yawing Moment
Positive
Yawing Moment

XS

YS

V

V

  0 V ^ from right of the pilot

Resultant of the
Lateral Side Force
in front of CG
Resultant of the
Lateral Side Force
behind CG

Moment Arm in front of CG

Moment Arm behind CG

Negative
Yawing Moment
Positive
Yawing Moment

XS

YS

V

V

Moment Arm in front of CG

Moment Arm behind CG

Negative
Yawing Moment
Positive
Yawing Moment

n WB

c

XS

YS

V

V

Moment Arm in front of CG

Moment Arm behind CG

Negative
Yawing Moment
Positive
Yawing Moment

n WB

c

n WB

c

For most aircraft

“Aircraft Dynamics:
Chapter IV^ From Modeling to Simulation”

n

c

Conceptual Modeling of (cont.)

..next, on:

n V

c

XS
ZS

VS

Moment arm X

Point of application of the lateral
force on the vertical tail

XS
ZS

VS

Moment arm X

Point of application of the lateral
force on the vertical tail

XS

V 

Positive yawing moment

0 n V c

  0

VS X

Lateral force

YS

XS ZS

V 

Positive yawing moment

0 n V c

  0

VS X

Lateral force

YS

ZS

XS
YS

 

 

VV

VV

  0

Lateral force on
the vertical tail

XS
YS

 

 

VV

VV

  0

Lateral force on
the vertical tail

0

n V

c